Type 2 <=> One-dimensional Group3, customized for TIFF
Type 3 <=> Two-dimensional Group3, uses the original 1D internally
Type 4 <=> Two-dimensional Group4
So let's clarify that this is not Group3 1D but the TIFF variant, which
is called `CCITTRLE` in libtiff. So let's stick with this name to avoid
confusion.
TIFF files are made in a way that make them easily extendable and over
the years people have made sure to exploit that. In other words, it's
easy to find images with non-standard tags. Instead of returning an
error for that, let's skip them.
Note that we need to make sure to realign the reading head in the file.
The test case was originally a 10x10 checkerboard image with required
tags, and also the `DocumentName` tag. Then, I modified this tag in a
hexadecimal editor and replaced its id with 30 000 (0x3075 as a LE u16)
and the type with the same value as well. This is AFAIK, never used as
a custom TIFF tag, so this should remain an invalid tag id and type.
TIFF images with the PhotometricInterpretation tag set to RGBPalette are
based on indexed colors instead of explicitly describing the color for
each pixel. Let's add support for them.
The test case was generated with GIMP using the Indexed image mode after
adding an alpha layer. Not all decoders are able to open this image, but
GIMP can.
UnassociatedAlpha is the one used by GIMP when generating TIFF images
with transparency. Support is added for Grayscale and RGB images as it's
the two that we support right now but managing transparency should be
really straightforward for other types as well.
This compression (tag Compression=2) is not very popular on its own, but
a base to implement CCITT3 2D and CCITT4 compressions.
As the format has no real benefits, it is quite hard to find an app that
accepts tho encode that for you. So I used the following program that
calls `libtiff` directly:
```cpp
#include <vector>
#include <cstdlib>
#include <iostream>
#include <tiffio.h>
// An array containing 0 and 1 of length width * height.
extern std::vector<uint8_t> array;
int main() {
// From: https://stackoverflow.com/a/34257789
TIFF *image = TIFFOpen("input.tif", "w");
int const width = 400;
int const height = 300;
TIFFSetField(image, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField(image, TIFFTAG_IMAGELENGTH, height);
TIFFSetField(image, TIFFTAG_PHOTOMETRIC, 0);
TIFFSetField(image, TIFFTAG_COMPRESSION, COMPRESSION_CCITTRLE);
TIFFSetField(image, TIFFTAG_BITSPERSAMPLE, 1);
TIFFSetField(image, TIFFTAG_SAMPLESPERPIXEL, 1);
TIFFSetField(image, TIFFTAG_ROWSPERSTRIP, 1);
std::vector<uint8_t> scan_line(width / 8 + 8, 0);
int count = 0;
for (int i = 0; i < height; i++) {
std::fill(scan_line.begin(), scan_line.end(), 0);
for (int x = 0; x < width; ++x) {
uint8_t eight_pixels = scan_line.at(x / 8);
eight_pixels = eight_pixels << 1;
eight_pixels |= !array.at(i * width + x);
scan_line.at(x / 8) = eight_pixels;
}
int bytes = int(width / 8.0 + 0.5);
if (TIFFWriteScanline(image, scan_line.data(), i, bytes) != 1)
std::cerr << "Something went wrong\n";
}
TIFFClose(image);
}
```