By constraining two implementations, the compiler will select the best
fitting one. All this will require is duplicating the implementation and
simplifying for the `void` case.
This constraining also informs both the caller and compiler by passing
the callback parameter types as part of the constraint
(e.g.: `IterationFunction<int>`).
Some `for_each` functions in LibELF only take functions which return
`void`. This is a minimal correctness check, as it removes one way for a
function to incompletely do something.
There seems to be a possible idiom where inside a lambda, a `return;` is
the same as `continue;` in a for-loop.
For whatever reason, symbolication was doing an O(n) walk of all the
symbols, despite having sorted them beforehand.
Changing this to a binary_search() makes symbolication noticeably
faster and improves Profiler startup time.
We were using ELF::Image::section(0) to indicate the "undefined"
section, when what we really wanted was just Optional<Section>.
So let's use Optional instead. :^)
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
The name-to-section lookup table was only used in a handful of places,
and none of them were calling it nearly enough to justify building
a cache for it in the first place. So let's get rid of it and reduce
startup time by a little bit. :^)