These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.Everything:
The modifications in this commit were automatically made using the
following command:
find . -name '*.cpp' -exec sed -i -E 's/dbg\(\) << ("[^"{]*");/dbgln\(\1\);/' {} \;
This prevents zombies created by multi-threaded applications and brings
our model back to closer to what other OSs do.
This also means that SIGSTOP needs to halt all threads, and SIGCONT needs
to resume those threads.
New Thread objects should be adopted into a RefPtr upon creation.
If creating a thread failed (e.g. out of memory), releasing the RefPtr
will destruct the partially created object, but in the successful case
the thread will add an additional reference that it keeps until it
finishes execution. Adopting will drop it to 1 when returning from
create_thread, or 0 if the thread could not be fully constructed.
This adds the ability to pass a pointer to kernel thread/process.
Also add the ability to use a closure as thread function, which
allows passing information to a kernel thread more easily.
g_scheduler_lock cannot safely be acquired after Thread::m_lock
because another processor may already hold g_scheduler_lock and wait
for the same Thread::m_lock.
Similar to Process, we need to make Thread refcounted. This will solve
problems that will appear once we schedule threads on more than one
processor. This allows us to hold onto threads without necessarily
holding the scheduler lock for the entire duration.
The thread joining logic hadn't been updated to account for the subtle
differences introduced by software context switching. This fixes several
race conditions related to thread destruction and joining, as well as
finalization which did not properly account for detached state and the
fact that threads can be joined after termination as long as they're not
detached.
Fixes#3596
There are plenty of places in the kernel that aren't
checking if they actually got their allocation.
This fixes some of them, but definitely not all.
Fixes#3390Fixes#3391
Also, let's make find_one_free_page() return nullptr
if it doesn't get a free index. This stops the kernel
crashing when out of memory and allows memory purging
to take place again.
Fixes#3487
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
Userspace<void*> is a bit strange here, as it would appear to the
user that we intend to de-refrence the pointer in kernel mode.
However I think it does a good join of illustrating that we are
treating the void* as a value type, instead of a pointer type.
This compiles, and contains exactly the same bugs as before.
The regex 'FIXME: PID/' should reveal all markers that I left behind, including:
- Incomplete conversion
- Issues or things that look fishy
- Actual bugs that will go wrong during runtime
Allow passing in an optional timeout to Thread::block and move
the timeout check out of Thread::Blocker. This way all Blockers
implicitly support timeouts and don't need to implement it
themselves. Do however allow them to override timeouts (e.g.
for sockets).
This is something I've been meaning to do for a long time, and here we
finally go. This patch moves all sys$foo functions out of Process.cpp
and into files in Kernel/Syscalls/.
It's not exactly one syscall per file (although it could be, but I got
a bit tired of the repetitive work here..)
This makes hacking on individual syscalls a lot less painful since you
don't have to rebuild nearly as much code every time. I'm also hopeful
that this makes it easier to understand individual syscalls. :^)