This creates all interfaces when the device is enumerated, with a link
to the configuration that it is a part of. As such, a new class,
`USBInterface` has been introduced to express this state.
Some other parts of the USB stack may require us to perform a control
transfer. Instead of abusing `friend` to expose the default pipe, let's
just expose it via a function.
This also introduces a new class, `USBConfiguration` that stores a
configuration. The device, when instructed, sets this configuration and
holds a pointer to it so we have a record of what configuration is
currently active.
Instead, hold the lock while we copy the contents to a stack-based
Vector then iterate on it without any locking.
Because we rely on heap allocations, we need to propagate errors back
in case of OOM condition, therefore, both PCI::enumerate API function
and PCI::Access::add_host_controller_and_enumerate_attached_devices use
now a ErrorOr<void> return value to propagate errors. OOM Error can only
occur when enumerating the m_device_identifiers vector under a spinlock
and trying to expand the temporary Vector which will be used locklessly
to actually iterate over the PCI::DeviceIdentifiers objects.
The function `KString::must_create()` can only be enforced
during early boot (that is, when `g_in_early_boot` is true), hence
the use of this function during runtime causes a `VERIFY` to assert,
leading to a Kernel Panic.
We should instead use `TRY()` along with `try_create()` to prevent
this from crashing whenever a USB device is inserted into the system,
and we don't have enough memory to allocate the device's KString.
This was a premature optimization from the early days of SerenityOS.
The eternal heap was a simple bump pointer allocator over a static
byte array. My original idea was to avoid heap fragmentation and improve
data locality, but both ideas were rooted in cargo culting, not data.
We would reserve 4 MiB at boot and only ended up using ~256 KiB, wasting
the rest.
This patch replaces all kmalloc_eternal() usage by regular kmalloc().
Instead, allocate before constructing the object and pass NonnullOwnPtr
of KString to the object if needed. Some classes can determine their
names as they have a known attribute to look for or have a static name.
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
The platform independent Processor.h file includes the shared processor
code and includes the specific platform header file.
All references to the Arch/x86/Processor.h file have been replaced with
a reference to Arch/Processor.h.
Previously there was a mix of returning plain strings and returning
explicit string views using `operator ""sv`. This change switches them
all to standardized on `operator ""sv` as it avoids a call to strlen.
This allows us to remove the PCI::get_interrupt_line API function. As a
result, this removes a bunch of not so great patterns that we used to
cache PCI interrupt line in many IRQHandler derived classes instead of
just using interrupt_number method of IRQHandler class.
This patch adds KBufferBuilder::try_create() and treats it like anything
else that can fail. And so, failure to allocate the initial internal
buffer of the builder will now propagate an ENOMEM to the caller. :^)
A couple of things were changed:
1. Semantic changes - PCI segments are now called PCI domains, to better
match what they are really. It's also the name that Linux gave, and it
seems that Wikipedia also uses this name.
We also remove PCI::ChangeableAddress, because it was used in the past
but now it's no longer being used.
2. There are no WindowedMMIOAccess or MMIOAccess classes anymore, as
they made a bunch of unnecessary complexity. Instead, Windowed access is
removed entirely (this was tested, but never was benchmarked), so we are
left with IO access and memory access options. The memory access option
is essentially mapping the PCI bus (from the chosen PCI domain), to
virtual memory as-is. This means that unless needed, at any time, there
is only one PCI bus being mapped, and this is changed if access to
another PCI bus in the same PCI domain is needed. For now, we don't
support mapping of different PCI buses from different PCI domains at the
same time, because basically it's still a non-issue for most machines
out there.
2. OOM-safety is increased, especially when constructing the Access
object. It means that we pre-allocating any needed resources, and we try
to find PCI domains (if requested to initialize memory access) after we
attempt to construct the Access object, so it's possible to fail at this
point "gracefully".
3. All PCI API functions are now separated into a different header file,
which means only "clients" of the PCI subsystem API will need to include
that header file.
4. Functional changes - we only allow now to enumerate the bus after
a hardware scan. This means that the old method "enumerate_hardware"
is removed, so, when initializing an Access object, the initializing
function must call rescan on it to force it to find devices. This makes
it possible to fail rescan, and also to defer it after construction from
both OOM-safety terms and hotplug capabilities.
This expands the reach of error propagation greatly throughout the
kernel. Sadly, it also exposes the fact that we're allocating (and
doing other fallible things) in constructors all over the place.
This patch doesn't attempt to address that of course. That's work for
our future selves.