Two issues:
- The format string said "{:9}", which left-pads with spaces and not
zeros as required
- Even when correcting that, we were not accounting for step 11 b:
"Set fraction to the longest possible substring of fraction starting
at position 0 and not ending with the code unit 0x0030 (DIGIT ZERO)."
We can safely use trim() for that as the formatted string is known to
not contain only zeros (which would leave the left-most in place).
Also adds tests for "UTC" and various numeric offsets.
Well... sort of. This adds the function itself and all the scaffolding
from the ShadowRealm API (and basically completes its implementation).
However, we do not nearly have enough support for modules and imports,
so we currently pretend whatever was attempted to be imported failed -
once we have HostImportModuleDynamically it should be relatively easy to
complete the implementation.
Step 12 was using `lhs.is_bigint()` instead of `rhs.is_bigint()`,
meaning you got:
```js
1n == Object(1n); // true
Object(1n) == 1n; // false
```
This also adds spec comments to is_loosely_equal.
This patch implements:
- Spec compliant [[Call]] and [[Construct]] internal slots, as virtual
FunctionObject::internal_{call,construct}(). These effectively replace
the old virtual FunctionObject::{call,construct}(), but with several
advantages:
- Clear and consistent naming, following the object internal methods
- Use of completions
- internal_construct() returns an Object, and not Value! This has been
a source of confusion for a long time, since in the spec there's
always an Object returned but the Value return type in LibJS meant
that this could not be fully trusted and something could screw you
over.
- Arguments are passed explicitly in form of a MarkedValueList,
allowing manipulation (BoundFunction). We still put them on the
execution context as a lot of code depends on it (VM::arguments()),
but not from the Call() / Construct() AOs anymore, which now allows
for bypassing them and invoking [[Call]] / [[Construct]] directly.
Nothing but Call() / Construct() themselves do that at the moment,
but future additions to ECMA262 or already existing web specs might.
- Spec compliant, standalone Call() and Construct() AOs: currently the
closest we have is VM::{call,construct}(), but those try to cater to
all the different function object subclasses at once, resulting in a
horrible mess and calling AOs with functions they should never be
called with; most prominently PrepareForOrdinaryCall and
OrdinaryCallBindThis, which are only for ECMAScriptFunctionObject.
As a result this also contains an implicit optimization: we no longer
need to create a new function environment for NativeFunctions - which,
worth mentioning, is what started this whole crusade in the first place
:^)
This patch introduces the "environment coordinate" concept, which
encodes the distance from a variable access to the binding it ends up
resolving to.
EnvironmentCoordinate has two fields:
- hops: The number of hops up the lexical environment chain we have
to make before getting to the resolved binding.
- index: The index of the resolved binding within its declarative
environment record.
Whenever a variable lookup resolves somewhere inside a declarative
environment, we now cache the coordinates and reuse them in subsequent
lookups. This is achieved via a coordinate cache in JS::Identifier.
Note that non-strict direct eval() breaks this optimization and so it
will not be performed if the resolved environment has been permanently
screwed by eval().
This makes variable access *significantly* faster. :^)