As many macros as possible are moved to Macros.h, while the
macros to create a test case are moved to TestCase.h. TestCase is now
the only user-facing header for creating a test case. TestSuite and its
helpers have moved into a .cpp file. Instead of requiring a TEST_MAIN
macro to be instantiated into the test file, a TestMain.cpp file is
provided instead that will be linked against each test. This has the
side effect that, if we wanted to have test cases split across multiple
files, it's as simple as adding them all to the same executable.
The test main should be portable to kernel mode as well, so if
there's a set of tests that should be run in self-test mode in kernel
space, we can accomodate that.
A new serenity_test CMake function streamlines adding a new test with
arguments for the test source file, subdirectory under /usr/Tests to
install the test application and an optional list of libraries to link
against the test application. To accomodate future test where the
provided TestMain.cpp is not suitable (e.g. test-js), a CUSTOM_MAIN
parameter can be passed to the function to not link against the
boilerplate main function.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Get rid of the weird old signature:
- int StringType::to_int(bool& ok) const
And replace it with sensible new signature:
- Optional<int> StringType::to_int() const
With 0 initial capacity, we don't allocate an underlying ByteBuffer
for the StringBuilder, which would then lead to a null String() being
returned from to_string().
This patch makes sure we always build a valid String.
This adds a replace functionality that replaces a string that contains
occurences of a "needle" by a "replacement" value. With "all_occurences"
enabled, all occurences are being replaced, otherwise only the first
occurence is being replaced.
FlyString is a flyweight string class that wraps a RefPtr<StringImpl>
known to be unique among the set of FlyStrings. The class is very
unoptimized at the moment.
When to use FlyString:
- When you want O(1) string comparison
- When you want to deduplicate a lot of identical strings
When not to use FlyString:
- For strings that don't need either of the above features
- For strings that are likely to be unique
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
Using int was a mistake. This patch changes String, StringImpl,
StringView and StringBuilder to use size_t instead of int for lengths.
Obviously a lot of code needs to change as a result of this.
`AK::String` can now be reversed via AK::String::reverse(). This makes
life a lot easier for functions like `itoa()`, where the output
ends up being backwards. Very much not like the normal STL
(which requires an `std::reverse` object) way of doing things.
A call to reverse returns a new `AK::String` so as to not upset any
of the possible references to the same `StringImpl` shared between
Strings.
This was a workaround to be able to build on case-insensitive file
systems where it might get confused about <string.h> vs <String.h>.
Let's just not support building that way, so String.h can have an
objectively nicer name. :^)
Instead of aborting the program when we hit an assertion, just print a
message and keep going.
This allows us to write tests that provoke assertions on purpose.