Lazily committed shared memory was not working in situations where one
process would write to the memory and another would only read from it.
Since the reading process would never cause a write fault in the shared
region, we'd never notice that the writing process had added real
physical pages to the VMObject. This happened because the lazily
committed pages were marked "present" in the page table.
This patch solves the issue by always allocating shared memory up front
and not trying to be clever about it.
Before this change, we would sometimes map a region into the address
space with !is_shared(), and then moments later call set_shared(true).
I found this very confusing while debugging, so this patch makes us pass
the initial shared flag to the Region constructor, ensuring that it's in
the correct state by the time we first map the region.
By designating a committed page pool we can guarantee to have physical
pages available for lazy allocation in mappings. However, when forking
we will overcommit. The assumption is that worst-case it's better for
the fork to die due to insufficient physical memory on COW access than
the parent that created the region. If a fork wants to ensure that all
memory is available (trigger a commit) then it can use madvise.
This also means that fork now can gracefully fail if we don't have
enough physical pages available.
Rather than lazily committing regions by default, we now commit
the entire region unless MAP_NORESERVE is specified.
This solves random crashes in low-memory situations where e.g. the
malloc heap allocated memory, but using pages that haven't been
used before triggers a crash when no more physical memory is available.
Use this flag to create large regions without actually committing
the backing memory. madvise() can be used to commit arbitrary areas
of such regions after creating them.
This adds the ability for a Region to define volatile/nonvolatile
areas within mapped memory using madvise(). This also means that
memory purging takes into account all views of the PurgeableVMObject
and only purges memory that is not needed by all of them. When calling
madvise() to change an area to nonvolatile memory, return whether
memory from that area was purged. At that time also try to remap
all memory that is requested to be nonvolatile, and if insufficient
pages are available notify the caller of that fact.
Fix some problems with join blocks where the joining thread block
condition was added twice, which lead to a crash when trying to
unblock that condition a second time.
Deferred block condition evaluation by File objects were also not
properly keeping the File object alive, which lead to some random
crashes and corruption problems.
Other problems were caused by the fact that the Queued state didn't
handle signals/interruptions consistently. To solve these issues we
remove this state entirely, along with Thread::wait_on and change
the WaitQueue into a BlockCondition instead.
Also, deliver signals even if there isn't going to be a context switch
to another thread.
Fixes#4336 and #4330
This changes the Thread::wait_on function to not enable interrupts
upon leaving, which caused some problems with page fault handlers
and in other situations. It may now be called from critical
sections, with interrupts enabled or disabled, and returns to the
same state.
This also requires some fixes to Lock. To aid debugging, a new
define LOCK_DEBUG is added that enables checking for Lock leaks
upon finalization of a Thread.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
Sometimes a physical underlying page may be there, but we may be
unable to allocate a page table that may be needed to map it. Bubble
up such mapping errors so that they can be handled more appropriately.
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
This patch adds PageFaultResponse::OutOfMemory which informs the fault
handler that we were unable to allocate a necessary physical page and
cannot continue.
In response to this, the kernel will crash the current process. Because
we are OOM, we can't symbolicate the crash like we normally would
(since the ELF symbolication code needs to allocate), so we also
communicate to Process::crash() that we're out of memory.
Now we can survive "allocate 300 MB" (only the allocate process dies.)
This is definitely not perfect and can easily end up killing a random
innocent other process who happened to allocate one page at the wrong
time, but it's a *lot* better than panicking on OOM. :^)
This function has a lot of callers that don't bother checking if it
returns successfully or not. We'll need to handle failure in a bunch
of places and then we can remove this assertion.
If we OOM during a CoW fault and fail to allocate a new page for the
writing process, just leave the original VMObject alone so everyone
else can keep using it.
Since a Region is basically a view into a potentially larger VMObject,
it was always necessary to include the Region starting offset when
accessing its underlying physical pages.
Until now, you had to do that manually, but this patch adds a simple
Region::physical_page() for read-only access and a physical_page_slot()
when you want a mutable reference to the RefPtr<PhysicalPage> itself.
A lot of code is simplified by making use of this.
This patch adds the minherit() syscall originally invented by OpenBSD.
Only the MAP_INHERIT_ZERO mode is supported for now. If set on an mmap
region, that region will be zeroed out on fork().
This was caught by running all crash tests with "crash -A".
Basically, non-readable pages need to not be mapped *at all* so that
a "page not present" exception is provoked on access.
Unfortunately x86 does not support write-only mappings, so this is
the best we can do.
Fixes#1336.
Also, duplicate data in dbg() and klog() calls were removed.
In addition, leakage of virtual address to kernel log is prevented.
This is done by replacing kprintf() calls to dbg() calls with the
leaked data instead.
Also, other kprintf() calls were replaced with klog().
It's now up to the caller to provide a VMObject when constructing a new
Region object. This will make it easier to handle things going wrong,
like allocation failures, etc.
When forking a process, we now turn all of the private inode-backed
mmap() regions into copy-on-write regions in both the parent and child.
This patch also removes an assertion that becomes irrelevant.
We don't have to log the process name/PID/TID, dbg() automatically adds
that as a prefix to every line.
Also we don't have to do .characters() on Strings passed to dbg() :^)
We now have PrivateInodeVMObject and SharedInodeVMObject, corresponding
to MAP_PRIVATE and MAP_SHARED respectively.
Note that PrivateInodeVMObject is not used yet.
This patch adds a globally shared zero-filled PhysicalPage that will
be mapped into every slot of every zero-filled AnonymousVMObject until
that page is written to, achieving CoW-like zero-filled pages.
Initial testing show that this doesn't actually achieve any sharing yet
but it seems like a good design regardless, since it may reduce the
number of page faults taken by programs.
If you look at the refcount of MM.shared_zero_page() it will have quite
a high refcount, but that's just because everything maps it everywhere.
If you want to see the "real" refcount, you can build with the
MAP_SHARED_ZERO_PAGE_LAZILY flag, and we'll defer mapping of the shared
zero page until the first NP read fault.
I've left this behavior behind a flag for future testing of this code.
It doesn't look healthy to create raw references into an array before
a temporary unlock. In fact, that temporary unlock looks generally
unhealthy, but it's a different problem.