Simplify core methods in the VirtIO bus handling code by ensuring proper
error propagation. This makes initialization of queues, handling changes
in device configuration, and other core patterns more readable as well.
It also allows us to remove the obnoxious pattern of checking for
boolean "success" and if we get false answer then returning an actual
errno code.
The VirtIO specification defines many types of devices with different
purposes, and it also defines 3 possible transport mediums where devices
could be connected to the host machine.
We only care about the PCIe transport, but this commit puts the actual
foundations for supporting the lean MMIO transport too in the future.
To ensure things are kept abstracted but still functional, the VirtIO
transport code is responsible for what is deemed as related to an actual
transport type - allocation of interrupt handlers and tinkering with low
level transport-related registers, etc.
This has KString, KBuffer, DoubleBuffer, KBufferBuilder, IOWindow,
UserOrKernelBuffer and ScopedCritical classes being moved to the
Kernel/Library subdirectory.
Also, move the panic and assertions handling code to that directory.
Rename the initialize method to initialize_virtio_resources so it's
clear what this method is intended for.
To ensure healthier device initialization, we could also return the type
of ErrorOr<void> from this method, so in all overriden instances and in
the original method code, we could leverage TRY() pattern which also
does simplify the code a bit.
This configuration exposes a suboptimal mechanism to access other
VirtIO device configurations. It is also the only configuration to use a
zero length for a configuration structure, and specify a valid BAR which
triggered a kernel panic when attaching a virtio-gpu-pci device before
95b15e4901 was applied.
The real solution for that problem is to ignore this configuration type
because we never actually use it. It means that we can VERIFY that all
other configuration types have a valid length, as being expected.
This class is intended to replace all IOAddress usages in the Kernel
codebase altogether. The idea is to ensure IO can be done in
arch-specific manner that is determined mostly in compile-time, but to
still be able to use most of the Kernel code in non-x86 builds. Specific
devices that rely on x86-specific IO instructions are already placed in
the Arch/x86 directory and are omitted for non-x86 builds.
The reason this works so well is the fact that x86 IO space acts in a
similar fashion to the traditional memory space being available in most
CPU architectures - the x86 IO space is essentially just an array of
bytes like the physical memory address space, but requires x86 IO
instructions to load and store data. Therefore, many devices allow host
software to interact with the hardware registers in both ways, with a
noticeable trend even in the modern x86 hardware to move away from the
old x86 IO space to exclusively using memory-mapped IO.
Therefore, the IOWindow class encapsulates both methods for x86 builds.
The idea is to allow PCI devices to be used in either way in x86 builds,
so when trying to map an IOWindow on a PCI BAR, the Kernel will try to
find the proper method being declared with the PCI BAR flags.
For old PCI hardware on non-x86 builds this might turn into a problem as
we can't use port mapped IO, so the Kernel will gracefully fail with
ENOTSUP error code if that's the case, as there's really nothing we can
do within such case.
For general IO, the read{8,16,32} and write{8,16,32} methods are
available as a convenient API for other places in the Kernel. There are
simply no direct 64-bit IO API methods yet, as it's not needed right now
and is not considered to be Arch-agnostic too - the x86 IO space doesn't
support generating 64 bit cycle on IO bus and instead requires two 2
32-bit accesses. If for whatever reason it appears to be necessary to do
IO in such manner, it could probably be added with some neat tricks to
do so. It is recommended to use Memory::TypedMapping struct if direct 64
bit IO is actually needed.
Previously there was a mix of returning plain strings and returning
explicit string views using `operator ""sv`. This change switches them
all to standardized on `operator ""sv` as it avoids a call to strlen.
This ensures we dont try to hold the PCI Access mutex under IRQ when
printing VirtIO debug logs (which is not allowed and results in an
assertion). This is also relatively free, as it requires no allocations
(we're just storing a pointer to the rodata section).
This is a fix so the VirtIO code doesn't lead to assertion because we
try to determine the name based on the PCI values of the VirtIO device,
because trying to read from the PCI configuration space requires to
acquire a Mutex, which fails in an IRQ context.
To ensure we never encounter a situation when we call a pure virtual
function in an IRQ context, let's make class_name() method to be a
non-pure virtual function, so it can be still called at anytime.
This ensures we safely handle interrupts (which can call virtual
functions), so they don't happen in the constructor - this pattern can
lead to a crash, if we are still in the constructor context because
not all methods are available for usage (some are pure virtual,
so it's possible to call __cxa_pure_virtual).
Also, under some conditions like adding a PCI device via PCI-passthrough
mechanism in QEMU, it became exposed to the eye that the code asserts on
RNG::handle_device_config_change(). That device has no configuration but
if the hypervisor still misbehaves and tries to configure it, we should
simply return false to indicate nothing happened.