In a TTY's non-canonical mode, data availability can be configured by
setting VMIN and VTIME to determine the minimum amount of bytes to read
and the timeout between bytes, respectively. Some ports (such as SRB2)
set VMIN to 0 which effectively makes reading a TTY such as stdin a
non-blocking read. We didn't support this, causing ports to hang as soon
as they try to read stdin without any data available.
Add a very duct-tapey implementation for the case where VMIN == 0 by
overwriting the TTY's description's blocking status; 3 FIXMEs are
included to make sure we clean this up some day.
This makes it possible to use MakeIndexSequqnce in functions like:
template<typename T, size_t N>
constexpr auto foo(T (&a)[N])
This means AK/StdLibExtraDetails.h must now include AK/Types.h
for size_t, which means AK/Types.h can no longer include
AK/StdLibExtras.h (which arguably it shouldn't do anyways),
which requires rejiggering some things.
(IMHO Types.h shouldn't use AK::Details metaprogramming at all.
FlatPtr doesn't necessarily have to use Conditional<> and ssize_t could
maybe be in its own header or something. But since it's tangential to
this PR, going with the tried and true "lift things that cause the
cycle up to the top" approach.)
This helps ensure no one accidentally accesses m_requests without first
locking it's spinlock. In fact this change fixed such a case, since
process_cq() implicitly assumed the caller locked the lock, which was
not the case for NVMePollQueue::submit_sqe().
Due to an incorrect lambda scope capture declaration, we would copy the
result status at the start of the function, before it actually got
updated with the final status. Capture it by reference instead to
ensure we report the updated result.
Instead of assuming data races won't occur and trying to somehow verify
it with manual un-atomic tracking, we can just use a recursive spinlock
instead of a normal one, to resolve the original deadlock.
Most of the actual logic is identical, with the only real difference
being that one wraps it with an async work item.
Merge the implementations to reduce duplications (which will also
require the fixes in the next commits to only be done once).
We need to handle the character map to set the code point before we can
reassign the correct key to the queued_event.key. This fixes keyboard
shortcuts using the incorrect keys based on the keyboard layout.
Automarks are similar to bookmarks placed by the terminal, allowing the
user to selectively remove a single command and its output from the
terminal scrollback.
This commit implements a single way to add marks: automatically placing
them when the shell becomes interactive.
To make sure the shell behaves correctly after its expected prompt
position changes, the terminal layer forces a resize event to be passed
to the shell on such (possibly) partial clears; this also has the nice
side effect of fixing the disappearing prompt on the preexisting "clear
including history" action: Fixes#4192.
This device will be used by userspace to read mouse packets from all
mouse devices that are attached to the machine.
This change is a preparation before we can enable seamless hotplug
capabilities in WindowServer for mouse devices, without any major change
on the userspace side.
We do this by implementing the following fixes:
- The Key_Plus is assigned to a proper map entry index now which is 0x4e
both on the keypad and non-keypad keys.
- Shift+Q now prints out "Q" properly on scan code set 2.
- Key BackSlash (or Pipe on shift key being pressed down) is now working
properly as well.
- Key_Pipe (which is "|" for en-US layout) is now working in scan code
set 2.
- Numpad keys as well as the decimal separator key are working again.
This scan code set is more advanced than the basic scan code set 1, and
is required to be supported for some bare metal hardware that might not
properly enable the PS2 first port translation in the i8042 controller.
LibWeb can now also generate bindings for keyboard events like the Pause
key, as well as other function keys (such as Right Alt, etc).
The logic for handling scan code sets is implemented by the PS2 keyboard
driver and is abstracted from the main HID KeyboardDevice code which
only handles "standard" KeyEvent(s).
This scan code set is more advanced than the basic scan code set 1, and
is required to be supported for some bare metal hardware that might not
properly enable the PS2 first port translation in the i8042 controller.
LibWeb can now also generate bindings for keyboard events like the Pause
key, as well as other function keys (such as Right Alt, etc).
The logic for handling scan code sets is implemented by the PS2 keyboard
driver and is abstracted from the main HID KeyboardDevice code which
only handles "standard" KeyEvent(s).
This will be used later on by WindowServer so it will not use the
scancode, which will represent the actual character index in the
keyboard mapping when using scan code set 2.
In a bunch of cases, this actually ends up simplifying the code as
to_number will handle something such as:
```
Optional<I> opt;
if constexpr (IsSigned<I>)
opt = view.to_int<I>();
else
opt = view.to_uint<I>();
```
For us.
The main goal here however is to have a single generic number conversion
API between all of the String classes.
MasterPTY::read called DoubleBuffer::read which takes a mutex (which
may block) while holding m_slave's spinlock. If it did block, and was
later rescheduled on a different physical CPU, we would deadlock on
re-locking m_slave inside the unblock callback. (Since our recursive
spinlock implementation is processor based and not process based)
MasterPTY's double buffer unblock callback would take m_slave's
spinlock and then call evaluate_block_conditions() which would take
BlockerSet's spinlock, while on the other hand, BlockerSet's
add_blocker would take BlockerSet's spinlock, and then call
should_add_blocker, which would call unblock_if_conditions_are_met,
which would then call should_unblock, which will finally call
MasterPTY::can_read() which will take m_slave's spinlock.
Resolve this by moving the call to evaluate_block_conditions() out of
the scope of m_slave's spinlock, as there's no need to hold the lock
while calling it anyways.
The `[[gnu::packed]]` attribute apparently lowered the required
alignment of the structs, which caused the compiler to generate two
1 byte loads/stores on RISC-V. This caused the kernel to read/write
incorrect values, as the device only seems to accept 2 byte operations.
Following 77441079dd, the code in Kernel/Devices/HID/MouseDevice.cpp
is used by both USB and PS2 rodents. Make sure not to emit misleading
debug messages that could suggest that a USB mouse is a PS/2 one.
There's no need to have separate syscall for this kind of functionality,
as we can just have a device node in /dev, called "beep", that allows
writing tone generation packets to emulate the same behavior.
In addition to that, we remove LibC sysbeep function, as this function
was never being used by any C program nor it was standardized in any
way.
Instead, we move the userspace implementation to LibCore.
A bit old but a relatively uncomplicated device capable of outputting
1920x1080 video with 32-bit color. Tested with a Voodoo 3 3000 16MB
PCI card. Resolution switching from DisplaySettings also works.
If the requested mode contains timing information, it is used directly.
Otherwise, display timing values are selected from the EDID. First the
detailed timings are checked, and then standard and established
timings for which there is a matching DMT mode. The driver does not
(yet) read the actual EDID, so the generic EDID in DisplayConnector now
includes a set of common display modes to make this work.
The driver should also be compatible with the Voodoo Banshee, 4 and 5
but I don't have these cards to test this with. The PCI IDs of these
cards are included as a commented line in case someone wants to give it
a try.
This view is really nice to check flags, but when clearing them we must
make sure that we only ever try to set 1 bit at a time, which makes
setting bits through the structured view a footgun, as that fetches,
ors in and then sets, potentially resetting other flags.
Simplify core methods in the VirtIO bus handling code by ensuring proper
error propagation. This makes initialization of queues, handling changes
in device configuration, and other core patterns more readable as well.
It also allows us to remove the obnoxious pattern of checking for
boolean "success" and if we get false answer then returning an actual
errno code.
The VirtIO specification defines many types of devices with different
purposes, and it also defines 3 possible transport mediums where devices
could be connected to the host machine.
We only care about the PCIe transport, but this commit puts the actual
foundations for supporting the lean MMIO transport too in the future.
To ensure things are kept abstracted but still functional, the VirtIO
transport code is responsible for what is deemed as related to an actual
transport type - allocation of interrupt handlers and tinkering with low
level transport-related registers, etc.