Prekernel code currently assumes that mapping until MAX_KERNEL_SIZE
is enough to make the modules accessible. GRUB tries to load as low
as possible but higher than 1 MiB. Hence this is usually true.
However on EFI some ranges may already be used by boot services and
GRUB tries to avoid them if possible. This pushes modules higher.
The simplest solution is to map entire 4 GiB space.
As an additional benefit it makes the framebuffer accessible that
can be used for the debugging.
As there is no need for a Prekernel on aarch64, the Prekernel code was
moved into Kernel itself. The functionality remains the same.
SERENITY_KERNEL_AND_INITRD in run.sh specifies a kernel and an inital
ramdisk to be used by the emulator. This is needed because aarch64
does not need a Prekernel and the other ones do.
This enables further work on implementing KASLR by adding relocation
support to the pre-kernel and updating the kernel to be less dependent
on specific virtual memory layouts.
This implements a simple bootloader that is capable of loading ELF64
kernel images. It does this by using QEMU/GRUB to load the kernel image
from disk and pass it to our bootloader as a Multiboot module.
The bootloader then parses the ELF image and sets it up appropriately.
The kernel's entry point is a C++ function with architecture-native
code.
Co-authored-by: Liav A <liavalb@gmail.com>