When handling a page fault, we only need to remap the faulting region in
the current process. There's no need to traverse *all* regions that map
the same VMObject and remap them cross-process as well.
Those other regions will get remapped lazily by their own page fault
handlers eventually. Or maybe they won't and we avoided some work. :^)
- Instead of holding the VMObject lock across physical page allocation
and quick-map + copy, we now only hold it when updating the VMObject's
physical page slot.
Make sure we reject the unveil attempt with EPERM if the veil was locked
by another thread while we were parsing argument (and not holding the
veil state spinlock.)
Thanks Brian for spotting this! :^)
Amendment to #14907.
To ensure that we stay on the same CPU that acquired the spinlock until
we're completely unlocked, we now leave the critical section *before*
re-enabling interrupts.
We want to grab g_scheduler_lock *before* Thread::m_block_lock.
This appears to have fixed a deadlock that I encountered while building
DOOM with make -j2.
Path resolution may do blocking I/O so we must not do it while holding
a spinlock. There are tons of problems like this throughout the kernel
and we need to find and fix all of them.
This fixes an issue where we could get preempted after acquiring the
current Processor pointer, but before calling methods on it.
I strongly suspect this was the cause of "Processor::current() == this"
assertion failures.
This matches out general macro use, and specifically other verification
macros like VERIFY(), VERIFY_NOT_REACHED(), VERIFY_INTERRUPTS_ENABLED(),
and VERIFY_INTERRUPTS_DISABLED().
Instead of locking it twice, we now frontload all the work that doesn't
touch the fd table, and then only lock it towards the end of the
syscall.
The benefit here is simplicity. The downside is that we do a bit of
unnecessary work in the EMFILE error case, but we don't need to optimize
that case anyway.
If the final copy_to_user() call fails when writing the file descriptors
to the output array, we have to make sure the file descriptors don't
remain in the process file descriptor table. Otherwise they are
basically leaked, as userspace is not aware of them.
This matches the behavior of our sys$socketpair() implementation.
We don't need to explicitly check for EMFILE conditions before doing
anything in sys$pipe(). The fd allocation code will take care of it
for us anyway.
We ensure that when we call SharedInodeVMObject::sync we lock the inode
lock before calling Inode virtual write_bytes method directly to avoid
assertion on the unlocked inode lock, as it was regressed recently. This
is not a complete fix as the need to lock from each path before calling
the write_bytes method should be avoided because it can lead to
hard-to-find bugs, and this commit only fixes the problem temporarily.
Previously, when starved for pages, *all* clean file-backed memory
would be released, which is quite excessive.
This patch instead releases just 1 page, since only 1 page is needed
to satisfy the request to `allocate_physical_page()`
Previously, we could only release *all* clean pages.
This patch makes it possible to release a specific amount of clean
pages. If the attempted number of pages to release is more than the
amount of clean pages, all clean pages will be released.
At the point at which we try to map the Region it was already added to
the Process region tree, so we have to make sure to remove it before
freeing it in the mapping failure path, otherwise the tree will contain
a dangling pointer to the free'd instance.
This fixes an issue where failing the fork due to OOM or other error,
we'd end up destroying the Process too early. By the time we got to
WaitBlockerSet::finalize(), it was long gone.
Until now, our only backup plan when running out of physical pages
was to try and purge volatile memory. If that didn't work out, we just
hung userspace out to dry with an ENOMEM.
This patch improves the situation by also considering clean, file-backed
pages (that we could page back in from disk).
This could be better in many ways, but it already allows us to boot to
WindowServer with 256 MiB of RAM. :^)
This enum was created to help put distinction between the commandset and
the interface type, as ATAPI devices are simply ATA devices utilizing
the SCSI commandset. Because we don't support ATAPI, putting such type
of distinction is pointless, so let's remove this for now.
We don't really support ATAPI (SCSI packets over ATA channels) and it's
uncertain if we ever will support such type of media. For this reason,
there's basically no reason to keep this code.
If we ever introduce ATAPI support into the Kernel, we can simply put
this back into the codebase.
In the near future, we will be able to figure out connections between
storage devices and their partitions, so there's no need to hardcode 16
partitions per storage device - each storage device should be able to
have "infinite" count of partitions in it, and we should be able to use
and figure out about them.
This does not need to be a critical dmesg, as the system stays up
it makes more sense for it to be a normal dmesg message.
Luke mentioned this on discord, they really deserve the credit :^)
Reported-by: Luke Wilde <lukew@serenityos.org>
This deadlock was introduced with the creation of this API. The lock
order is such that we always need to take the page directory lock
before we ever take the MM lock.
This function violated that, as both Region creation and region
destruction require the pd and mm locks, but with the mm lock
already acquired we deadlocked with SMP mode enabled while other
threads were allocating regions.
With this change SMP boots to the desktop successfully for me,
(and then subsequently has other issues). :^)
This makes sure that the debug message are properly aligned when running
the kernel bare-metal on a Raspberry Pi. While we are here, also move
the function out of line.
We were previously rejecting `SO_REUSEADDR` with an `ENOPROTOOPT`, but
that made QEMU unhappy. Instead, just silently discard it and print a
FIXME message in case anybody wonders what went wrong if the system
won't reuse an address.
Instead of requiring each FileSystem implementation to call this method
when trying to write data, do the calls at 2 points to avoid further
calls (or lack of them due to not remembering to use it) at other files
and locations in the codebase.