This fixes an issue on Twitter where they were instantiating an
IntersectionObserver with a null root. The root IDL type is
`(Element or Document)?` so null needs to be allowed.
Rather than invoking AK::Time::from_timestamp at runtime, we can do so
at compile time. This reduces invoking TimeZone::get_time_zone_offset
100,000 times in a loop from about 7 seconds to 30 milliseconds.
We compute the effective overload sets for each argument count at build
time, to save us having to do it every time a function with overloads
is called.
As part of this, I've moved a couple of methods for checking for
null/undefined from UnionType to Type, and filled in more of their
steps.
This now detects more, and so causes us to hit a `TODO()` which is too
big for me to go after right now, so I've replaced that assertion with
a log message.
Track the kind of Type it is, and use that to provide some convenient
`is_foo()` / `as_foo()` methods. While I was at it, made these all
classes instead of structs and made their data private.
IDL function overload resolution requires knowing each IDL function's
parameters and their types at runtime. The simplest way to do that is
just to make the types the generator uses available to the runtime.
Parsing has moved to LibIDL, but code generation has not, since that is
very specific to WrapperGenerator.
Parse emoji from emoji-serenity.txt to allow displaying their names and
grouping them together in the EmojiInputDialog.
This also adds an "Unknown" value to the EmojiGroup enum. This will be
useful for emoji that aren't found in the UCD, or for when UCD downloads
are disabled.
This allows us to find emoji data for files such as /res/emoji/U+A9.png.
U+00A9 is not fully-qualified (its full form is U+00A9 U+FE0F). But the
UCD has unqualified data for this code point; generating it allows us to
categorize these emoji appropriately in the EmojiInputDialog.
According to TR #51, the "best definition of the full set [of emojis] is
in the emoji-test.txt file". This defines not only the emoji themselves,
but the order in which they should be displayed, and what "group" of
emojis they belong to.
There are still some remaining cases where generated code depends on the
existence of FooWrapper => Web::NS::Foo mappings. Fixing those will
require figuring out the appropriate namespace for all IDL types, not
just the currently parsed interface.
Unlike ensure_web_prototype<T>(), the cached version doesn't require the
prototype type to be fully formed, so we can use it without including
the FooPrototype.h header. It's also a bit less verbose. :^)
This is a monster patch that turns all EventTargets into GC-allocated
PlatformObjects. Their C++ wrapper classes are removed, and the LibJS
garbage collector is now responsible for their lifetimes.
There's a fair amount of hacks and band-aids in this patch, and we'll
have a lot of cleanup to do after this.
This patch moves the following things to being GC-allocated:
- Bindings::CallbackType
- HTML::EventHandler
- DOM::IDLEventListener
- DOM::DOMEventListener
- DOM::NodeFilter
Note that we only use PlatformObject for things that might be exposed
to web content. Anything that is only used internally inherits directly
from JS::Cell instead, making them a bit more lightweight.
This tells the wrapper generator that there is no separate wrapper class
for this interface, and it should refer directly to the C++ "Foo" object
instead of "FooWrapper".
The UCD only cares about a few locales for special casing rules (az, lt,
and tr). Unfortunately, LibUnicode cannot use LibLocale once the
libraries are separate because LibLocale will need to use LibUnicode for
many more things; thus there would be a circular dependency. Instead,
just generate the small enum needed for this one use case.
When LibLocale is placed in the Locale namespace, this will conflict
with the Locale structure in each CLDR generator. Rename this to
"LocaleData", and rename its parent UnicodeLocaleData to just "CLDR"
to avoid confusion between LocaleData and UnicodeLocaleData.
To prepare for placing all CLDR generated data in a new library,
LibLocale, this moves the code generators for the CLDR data to the
LibLocale subfolder.
Since LibUnicode depends on this data it used to include
Intl/AbstractOperations which in turn includes a number of other LibJS
headers. By moving this to its own header with minimal includes we can
save on rebuilding LibUnicode for unrelated LibJS header changes.
Intrinsics, i.e. mostly constructor and prototype objects, but also
things like empty and new object shape now live on a new heap-allocated
JS::Intrinsics object, thus completing the long journey of taking all
the magic away from the global object.
This represents the Realm's [[Intrinsics]] slot in the spec and matches
its existing [[GlobalObject]] / [[GlobalEnv]] slots in terms of
architecture.
In the majority of cases it should now be possibly to fully allocate a
regular object without the global object existing, and in fact that's
what we do now - the realm is allocated before the global object, and
the intrinsics between both :^)
- Prefer VM::current_realm() over GlobalObject::associated_realm()
- Prefer VM::heap() over GlobalObject::heap()
- Prefer Cell::vm() over Cell::global_object()
- Prefer Wrapper::vm() over Wrapper::global_object()
- Inline Realm::global_object() calls used to access intrinsics as they
will later perform a direct lookup without going through the global
object
This is needed so that the allocated NativeFunction receives the correct
realm, usually forwarded from the Object's initialize() function, rather
than using the current realm.