The pattern to construct `Application` was to use the `try_create`
method from the `C_OBJECT` macro. While being safe from an OOM
perspective, this method doesn't propagate errors from the constructor.
This patch make `Application` use the `C_OBJECT_ABSTRACT` and manually
define a `create` method that can bubble up errors from the
construction stage.
This commit also removes the ability to use `argc` and `argv` to
create an `Application`, only `Main`'s `Arguments` can be used.
From a user point of view, the patch renames `try_create` => `create`,
hence the huge number of modified files.
Rip that bandaid off!
This does the following, in one big, awkward jump:
- Replace all uses of `set_main_widget<Foo>()` with the `try` version.
- Remove `set_main_widget<Foo>()`.
- Rename the `try` version to just be `set_main_widget` because it's now
the only one.
The majority of places that call `set_main_widget<Foo>()` are inside
constructors, so this unfortunately gives us a big batch of new
`release_value_but_fixme_should_propagate_errors()` calls.
As new demuxers are added, this will get quite full of files, so it'll
be good to have a separate folder for these.
To avoid too many chained namespaces, the Containers subdirectory is
not also a namespace, but the Matroska folder is for the sake of
separating the multiple classes for parsed information entering the
Video namespace.
This adds player widget with working play/pause controls, a seek bar
which currently only displays the current playback position, and a
button to cycle between the scaling modes.
The player uses the new PlaybackManager class to handle demuxing,
decoding, and frame presentation timing.
Currently, the volume control is non-functional.
This moves the setting of code points in CICP structs to member
functions completely so that the code having to set these code points
can be much cleaner.
The class is virtual and has one subclass, SubsampledYUVFrame, which
is used by the VP9 decoder to return a single frame. The
output_to_bitmap(Bitmap&) function can be used to set pixels on an
existing bitmap of the correct size to the RGB values that
should be displayed. The to_bitmap() function will allocate a new bitmap
and fill it using output_to_bitmap.
This new class also implements bilinear scaling of the subsampled U and
V planes so that subsampled videos' colors will appear smoother.
This adds a struct called CodingIndependentCodePoints and related enums
that are used by video codecs to define its color space that frames
must be converted from when displaying a video.
Pre-multiplied matrices and lookup tables are stored to avoid most of
the floating point division and exponentiation in the conversion.
For testing purposes, this allows opening of any filename by passing it
as an argument.
Additionally, there is a --benchmark option that will just call decode
for 100 frames and then exit, printing the time spent in the decoder.
This allows the second shown frame of the VP9 test video to be decoded,
as the second chunk uses a superframe to encode a reference frame and
a second to inter predict between the keyframe and the reference frame.
For testing purposes, the output buffer is taken directly from the
decoder and displayed in an image widget.
The first keyframe can be displayed, but the second will not decode
so VideoPlayer will stop at frame 0 for now.
This implements a BT.709 YCbCr to RGB conversion in VideoPlayer, but
that should be moved to a library for handling color space conversion.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
This was required for correctly parsing more than one frame's
height/width data properly. Additionally, start handling failure
a little more gracefully. Since we don't fully parse a tile before
starting to parse the next tile, we will now no longer make it past
the first tile mark, meaning we should not handle that scenario well.
The class that was previously named Decoder handled section 6.X.X of
the spec, which actually deals with parsing out the syntax of the data,
not the actual decoding logic which is specified in section 8.X.X.
The new Decoder class will be in charge of owning and running the
Parser, as well as implementing all of the decoding behavior.
This patch brings all of LibVideo up to the east-const style in the
project. Additionally, it applies a few fixes from the reviews in #8170
that referred to older LibVideo code.