Otherwise, we end up propagating those dependencies into targets that
link against that library, which creates unnecessary link-time
dependencies.
Also included are changes to readd now missing dependencies to tools
that actually need them.
Even though the toolchain implicitly links against -lc, it does not know
where it should get LibC from except for the sysroot. In the case of
Clang this causes it to pick up the LibC stub instead, which might be
slightly outdated and feature missing symbols.
This is currently not an issue that manifests because we pass through
the dependency on LibC and other libraries by accident, which causes
CMake to link against the LibC target (instead of just the library),
and thus points the linker at the build output directory.
Since we are looking to fix that in the upcoming commits, let's make
sure that everything will still be able to find the proper LibC first.
The SemanticSyntaxHighlighter uses TokenInfo results from the
language server to provide 'semantic' syntax highlighting, which
provides more fin-grained text spans results.
For example, the SemanticSyntaxHighlighter can color function calls,
member fields references and user-defined types in different colors.
With the simple lexer-only syntax highlighter, all of these tokens were
given the same text highlighting span type.
Since we have to provide immediate highlighting feedback to the user
after each edit and before we get the result for the language server,
we use a heuristic which computes the diff between the current tokens
and the last known tokens with compete semantic information
(We use LibDiff for this).
This heuristic is not very performant, and starts feeling sluggish with
bigger (~200 LOC) files.
A possible future improvement would be only computing the diff for
tokens in text ranges that have changes since the last commit.
This parser will be used by the C++ langauge server to provide better
auto-complete (& maybe also other things in the future).
It is designed to be error tolerant, and keeps track of the position
spans of the AST nodes, which should be useful later for incremental
parsing.