This adapts our implementation to the editorial change in the temporal
proposal: 737baf2d
The changes to CalendarMethodsRecordLookup had already been implemented,
but we had followed the typo in the spec for CalendarMethodsRecordCall.
The issue in CalendarMethodsRecordCall hasn't surfaced yet, as the AOs
using Calendar Methods Record are currently not passing through a String
to represent a Calendar builtin.
No change to test-262.
This number is pure guesswork but it appears to fix GCC builds with
both ASAN and UBSAN hitting a native stack overflow before we have
a chance to catch it on our Azure CI.
This patch moves us away from the accumulator-based bytecode format to
one with explicit source and destination registers.
The new format has multiple benefits:
- ~25% faster on the Kraken and Octane benchmarks :^)
- Fewer instructions to accomplish the same thing
- Much easier for humans to read(!)
Because this change requires a fundamental shift in how bytecode is
generated, it is quite comprehensive.
Main implementation mechanism: generate_bytecode() virtual function now
takes an optional "preferred dst" operand, which allows callers to
communicate when they have an operand that would be optimal for the
result to go into. It also returns an optional "actual dst" operand,
which is where the completion value (if any) of the AST node is stored
after the node has "executed".
One thing of note that's new: because instructions can now take locals
as operands, this means we got rid of the GetLocal instruction.
A side-effect of that is we have to think about the temporal deadzone
(TDZ) a bit differently for locals (GetLocal would previously check
for empty values and interpret that as a TDZ access and throw).
We now insert special ThrowIfTDZ instructions in places where a local
access may be in the TDZ, to maintain the correct behavior.
There are a number of progressions and regressions from this test:
A number of async generator tests have been accidentally fixed while
converting the implementation to the new bytecode format. It didn't
seem useful to preserve bugs in the original code when converting it.
Some "does eval() return the correct completion value" tests have
regressed, in particular ones related to propagating the appropriate
completion after control flow statements like continue and break.
These are all fairly obscure issues, and I believe we can continue
working on them separately.
The net test262 result is a progression though. :^)
The JIT compiler was an interesting experiment, but ultimately the
security & complexity cost of doing arbitrary code generation at runtime
is far too high.
In subsequent commits, the bytecode format will change drastically, and
instead of rewriting the JIT to fit the new bytecode, this patch simply
removes the JIT instead.
Other engines, JavaScriptCore in particular, have already proven that
it's possible to handle the vast majority of contemporary web content
with an interpreter. They are currently ~5x faster than us on benchmarks
when running without a JIT. We need to catch up to them before
considering performance techniques with a heavy security cost.
This begins the process of aligning our implementation with the spec
with regard to using CalendarMethodsRecord. The main intent here is to
make it much easier to make normative changes to AOs which have been
updated to CalendarMethodsRecord.
While this does resolve various FIXMEs, many others above need to be
added in order to be able to pass through a CalendarMethodsRecord. The
use here aligns with what I can gather from the spec of what the
arguments to CreateCalendarMethodsRecord should be, but various AOs have
been updated so much with other changes it's not completely obvious.
Other AOs do not even exist in the latest version of the spec, but we
still rely on them.
As part of these updates, this commit coincidentally also fixes two
PlainDate roundingmode issues seen in test262 - a test of which is also
added in test-js. This issue boiled down to what appears to be an
observable optimization in the spec, where it can avoid calling
dateUntil in certain situations (roundingGranularityIsNoop).
However, the main goal here is to make it much easier to fix many more
issues in the future :^)
since/calendar-dateuntil-called-with-singular-largestunit.js ❌ -> ✅
until/calendar-dateuntil-called-with-singular-largestunit.js ❌ -> ✅
This is part of a large refactor made as part of the temporal spec.
Most AOs using the calendar now pass through this record. There will
need to be a long process of going through updating AOs to use this
record.
This makes it possible to use MakeIndexSequqnce in functions like:
template<typename T, size_t N>
constexpr auto foo(T (&a)[N])
This means AK/StdLibExtraDetails.h must now include AK/Types.h
for size_t, which means AK/Types.h can no longer include
AK/StdLibExtras.h (which arguably it shouldn't do anyways),
which requires rejiggering some things.
(IMHO Types.h shouldn't use AK::Details metaprogramming at all.
FlatPtr doesn't necessarily have to use Conditional<> and ssize_t could
maybe be in its own header or something. But since it's tangential to
this PR, going with the tried and true "lift things that cause the
cycle up to the top" approach.)
This is a bit tangled in that updating these functions involves a slew
of other spec changes.
However those spec updates fix a bunch of rounding issues, fixing 32
test cases.
Diff Tests:
+32 ✅ -32 ❌
This has the guts of the old temporal AO BalanceDuration with some
differences such as an extra precision of one unit. This appears to be
important for different rounding modes to act as a tiebreaker.
It also does not have any logic regarding a zoned date time 'relative
to' - the spec seems to have this factored in a way where callers are
expected to perform this logic if neccessary.
This is an editorial change in the ECMA-262 spec. See:
12d3687
This AO is meant to replace usages of IteratorNext followed by
IteratorValue with a single operation.
This allows, for example:
ThrowCompletionOr<Optional<Value>> foo()
{
return OptionalNone {};
}
The constructors and constraints here are lifted verbatim from
AK::Optional.
Value::Value(double) already converts double to int when it is safe, no
need to check for this here explicitly. While this technically removes
an optimization, I doubt that it will regress performance in any
measurable way.
For parameters that exist strictly as "locals", we can save time and
space by not adding them to the function environment.
This is a speed-up across the board on basically every test.
For example, ~11% on Octane/typescript.js :^)
This commit effectively just does a bulk update of this function to the
spec. Since there have been so many spec changes, no specific change was
made in mind, and many FIXMEs have been left for where we are still out
of date.
These changes also appear to include a normative change to the temporal
spec which was previously resulting in timeouts for some tests, and is
now resulting in a timeout.
Furthermore, this also resolves some crashes by protecting against
division by zero, instead throwing a RangeError. This can only happen
when a custom calender is provided which returns funky values. See:
https://github.com/tc39/proposal-temporal/commit/ed85e9
Diff Tests:
+8 ✅ -4 💀 -4 💥️
The spec has moved along quite a bit since this was originally
implemented. Catch up on at least some of these changes, and leave
FIXMEs for what is missing.
No change to test262.
Previously, constructing a `UnsignedBigInteger::from_base()` could
produce an incorrect result if the input string contained a valid
Base36 digit that was out of range of the given base. The same method
would also crash if the input string contained an invalid Base36 digit.
An error is now returned in both these cases.
Constructing a BigFraction from string is now also fallible, so that we
can handle the case where we are given an input string with invalid
digits.
`JsonValue::to_byte_string` has peculiar type-erasure semantics which is
not usually intended. Unfortunately, it also has a very stereotypical
name which does not warn about unexpected behavior. So let's prefix it
with `deprecated_` to make new code use `as_string` if it just wants to
get string value or `serialized<StringBuilder>` if it needs to do proper
serialization.
This is a normative change in the ECMA-262 spec. See:
22de374
The issue noted here has been fixed in the same way that we previously
worked around it. Update the spec notes to match.
Without a key function, the vtable for this class can be emitted into
every shared object or executable that needs it. This can cause bugs and
bad behavior when trying to access the vtable or RTTI for the class.
This is most easily seen when trying to call ``is<JS::Date>``, which
currently will do a dynamic_cast. Based on compiler, linker and loader
choices about ordering, it's possible that the code checking the RTTI
and the code that created the object could have a different vtable and
type_info in mind, causing false negatives for the ``is`` check.
There was recently a normative change to this AO in ECMA-262. See:
5eaee2f
It turns out we already implemented this to align with web-reality
before it was codified in the spec. This was a bit difficult to reason
without spec text and with a somewhat ad-hoc implementation. So this
patch aligns our implementation with the spec. There should not be any
behavior change.
JS::modulo was yielding a result of '0' for the input:
```
modulo(1., 18446744073709551616.)
```
Instead of the expected '1'.
As far as I can tell the reason for this is that the repeated calls to
fmod is losing precision in the calculation, leading to the wrong
result. Fix this by only calling fmod once, and preserving the negative
value behaviour by an 'if' check.
Without this, the LibWeb text test:
`/Streams/ReadableByteStream-enqueue-respond.html`
Would hang forever after using this function in the IDL conversion of a
u64 in ConvertToInt.
This should also be more efficient :^)
When resolving a rope, we've already taken care to resolve it to
a UTF-8 byte stream. There's no need to do a separate pass just for
validating the data again.
This was noticeable in some profiles. I made a simple microbenchmark
that gets a 30% speed-up:
("x" + "y".repeat(100_000_000)).trimStart()
Instead of using a StringBuilder, add a String::repeated(String, N)
overload that takes advantage of knowing it's already all UTF-8.
This makes the following microbenchmark go 4x faster:
"foo".repeat(100_000_000)
And for single character strings, we can even go 10x faster:
"x".repeat(100_000_000)
We can now implement steps related to resizable ArrayBuffer objects. We
can also implement a couple of missing SharedArrayBuffer checks.
The original implementation of this proposal did not have any tests, so
tests are added here for the whole implementation.