In the main page contents, /T0 might refer to a different font than
it might refer to in an XObject. So don't use the `Tf` argument as
font cache key. Instead, use the address of the font dictionary object.
Fixes false cache sharing, and also allows us to share cache entries
if the same font dict is referred to by two different names.
Fixes a regression from 2340e834cd (but keeps the speed-up intact).
It's less code, but it also fixes a bug: The implementation in
Filter.cpp used to use the previous byte as reference value, while
we're supposed to use the value of the previous channel as reference
(at least when a pixel is larger than one byte).
No behavior change.
Ideally, the PDF code would just call a function PNGLoader to do the
PNG unfiltering, but let's first try to make the implementations look
more similar.
These two static members are now used to implement respective `matches_`
methods but will also be useful to provide a global implementation of
the specified concept of whitespace.
TJ acts on a list of either strings or numbers.
The strings are drawn, and the numbers are treated as offsets.
Previously, we'd only apply the last-seen number as offset when
we saw a string. That had the effect of us ignoring all but the
last number in front of a string, and ignoring numbers at the
end of the list.
Now, we apply all numbers as offsets.
Our rendering of Tests/LibPDF/text.pdf now matches other PDF viewers.
Per 5177.Type2.pdf 3.1 "Type 2 Charstring Organization",
a glyph's charstring looks like:
w? {hs* vs* cm* hm* mt subpath}? {mt subpath}* endchar
The `w?` is the width of the glyph, but it's optional. So all
possible commands after it (hstem* vstem* cntrmask hintmask
moveto endchar) check if there's an extra number at the start
and interpret it as a width, for the very first command we read.
This was done by having an `is_first_command` local bool that
got set to false after the first command. That didn't work with
subrs: If the first command was a call to a subr that just pushed
a bunch of numbers, then the second command after it is the actual
first command.
Instead, move that bool into the state. Set it to false the
first time we try to read a width, since that means we just read
a command that could've been prefixed by a width.
Images can have multiple filters, each one of them is processed
sequentially. Only the last one will be relevant for the image format
(DCT or JPXDecode), so use the last filter instead of the first one to
detect that property.
For valid PDFs, this makes no difference.
For invalid PDFs, we now assert during the cast in resolve_to() instead
of returning a PDFError. However, most PDFs are valid, and even for
invalid PDFs, we'd previously keep the old color space around when
getting the PDF error and then usually assert later when the old
color space got passed a color with an unexpected number of components
(since the components were for the new color space).
Doesn't affect any of the > 2000 PDFs I use for testing locally,
is less code, and should make for less surprising asserts when it
does happen.
Namely, for CalGrayColorSpace, CalRGBColorSpace, LabColorSpace.
Fixes a crash rendering any page of Adobe's 5014.CIDFont_Spec.pdf
(which uses CalRGBColorSpace with an indirect dict: The dict is
object `92 0`, and many color spaces are inline objects referring
to it).
I didn't find example code for this and the AI assistant did very
poorly on this as well. So I had to write it all by myself!
It can be much more efficient I think, but I think the overall
shape is maybe roughly fine.
* SampledFunction now keeps the StreamObject it gets data from alive
(doesn't matter too much in practice, but does matter in the test,
where nothing else keeps the stream alive).
* If a sample is an integer, we would previously sample that value
twice and then divide by zero when interpolating. Make sure to
sample 1 unit apart.
* Compare array size to 3 and 4, not 4 and 5
* Fix literal typo in error message
Fixes crash processing 0000906.pdf from 0000.zip from the pdf/a dataset.
We did convert from the input space to linear space and then
to linear sRGB, but we forgot to re-apply gamma.
This uses the x^2.2 curve instead of the real sRGB curve for now.
CalRGBColorSpace::color() converts into a flat xyz space,
which already takes input whitepoint into account.
It shouldn't be taken into account again when converting from
the flat color space to D65.