This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
This commit removes DeprecatedString's "null" state, and replaces all
its users with one of the following:
- A normal, empty DeprecatedString
- Optional<DeprecatedString>
Note that null states of DeprecatedFlyString/StringView/etc are *not*
affected by this commit. However, DeprecatedString::empty() is now
considered equal to a null StringView.
The Kernel/API directory in general shouldn't include userspace code,
but structure definitions that both are shared between the Kernel and
userspace.
All users of the ioctl API obviously use LibC so LibC is the most common
and shared library for the affected programs.
Previously, calling `.right()` on a `Gfx::Rect` would return the last
column's coordinate still inside the rectangle, or `left + width - 1`.
This is called 'endpoint inclusive' and does not make a lot of sense for
`Gfx::Rect<float>` where a rectangle of width 5 at position (0, 0) would
return 4 as its right side. This same problem exists for `.bottom()`.
This changes `Gfx::Rect` to be endpoint exclusive, which gives us the
nice property that `width = right - left` and `height = bottom - top`.
It enables us to treat `Gfx::Rect<int>` and `Gfx::Rect<float>` exactly
the same.
All users of `Gfx::Rect` have been updated accordingly.
In doing so, this removes all uses of the Encoder's stream operator,
except for where it is currently still used in the generated IPC code.
So the stream operator currently discards any errors, which is the
existing behavior. A subsequent commit will propagate the errors.
Currently, the generated IPC decoders will default-construct the type to
be decoded, then pass that value by reference to the concrete decoder.
This, of course, requires that the type is default-constructible. This
was an issue for decoding Variants, which had to require the first type
in the Variant list is Empty, to ensure it is default constructible.
Further, this made it possible for values to become uninitialized in
user-defined decoders.
This patch makes the decoder interface such that the concrete decoders
themselves contruct the decoded type upon return from the decoder. To do
so, the default decoders in IPC::Decoder had to be moved to the IPC
namespace scope, as these decoders are now specializations instead of
overloaded methods (C++ requires specializations to be in a namespace
scope).
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
In order to avoid the base encode/decode methods from being used (and
failing a static assertion), we must be sure to declare/define the
custom type implementations as template specializations.
After this, LibIPC is no longer sensitive to include order.
This header file represents the entire interface between the kernel and
userland, and as such, no longer should be called FB.h but something
that represents the whole graphics subsystem.
Such mechanism will be used by the Intel Graphics driver, because we
lack support of changing the resolution on this driver currently, so,
when WindowServer will try to mode-set the display then it will fail,
and will use the safe mode-setting call instead to be able to show
something on screen.
This will allow us to change between a couple of properties, for now
it's only Device and Virtual. (How about Remote :^) ) These get handled
by a different screen backend in the Screen.
Currently this method always succeeds, but that won't be true once we
switch to the Core::Stream API. :^)
Some of these places would ideally show an error message to the user,
since failure to save a file is significant, but let's not get
distracted right now.
We create a base class called GenericFramebufferDevice, which defines
all the virtual functions that must be implemented by a
FramebufferDevice. Then, we make the VirtIO FramebufferDevice and other
FramebufferDevice implementations inherit from it.
The most important consequence of rearranging the classes is that we now
have one IOCTL method, so all drivers should be committed to not
override the IOCTL method or make their own IOCTLs of FramebufferDevice.
All graphical IOCTLs are known to all FramebufferDevices, and it's up to
the specific implementation whether to support them or discard them (so
we require extensive usage of KResult and KResultOr, together with
virtual characteristic functions).
As a result, the interface is much cleaner and understandable to read.
If a screen layout cannot be applied, instead of failing to start
WindowServer try to fall back to an auto-generated screen layout with
the devices that are detected.
Also, be a bit smarter about changing the current screen layout.
Instead of closing all framebuffers and bringing them back up, keep
what we can and only change resolution on those that we need to change
them on. To make this work we also need to move away from using an
array of structures to hold compositor related per-screen data to
attaching it to the Screen itself, which makes re-using a screen much
simpler.
This sets the stage so that DisplaySettings can configure the screen
layout and set various screen resolutions in one go. It also allows
for an easy "atomic" revert of the previous settings.