This concept is not present in ECMAScript, and it bothers me every time
I see it.
It's only used by WrapperGenerator, and even there only relevant in two
places, so let's fully remove it from LibJS and use a simple ternary
expression instead:
cpp_name = js_name.is_null() && legacy_null_to_empty_string
? String::empty()
: js_name.to_string(global_object);
Previously this would generate the following code:
JS::Value foo_value;
if (!foo.is_undefined())
foo_value = foo;
Which is dangerous as we're passing an empty value around, which could
be exposed to user code again. This is fine with "= null", for which it
also generates:
else
foo_value = JS::js_null();
So, in summary: a value of type `any`, not `required`, with no default
value and no initializer from user code will now default to undefined
instead of an empty value.
The list-format strings used for Intl.ListFormat are small, but quite
heavily duplicated. For example, the string "{0}, {1}" appears 6,519
times. Generate unique strings for this data to avoid duplication.
In the generated UnicodeLocale.cpp file, there are 296,408 strings for
localizations of languages, territories, scripts, currencies & keywords.
Of these, only 43,848 (14.8%) are actually unique, so there are quite a
large number of duplicated strings.
This generates a single compile-time array to store these strings. The
arrays for the localizations now store an index into this single array
rather than duplicating any strings.
Some CLDR languages.json / territories.json files contain localizations
for some lanuages/territories that are otherwise not present in the CLDR
database. We already don't generate anything in UnicodeLocale.cpp for
these anomalies, but this will stop us from even storing that data in
the generator's memory.
This doesn't affect the output of the generator, but will have an effect
after an upcoming commit to unique-ify all of the strings in the CLDR.
There are only 112 code points with special casing rules, so this array
is quite small (compared to the size 34,626 UnicodeData hash map that is
also storing this data). Removing all casing rules from UnicodeData will
happen in a subsequent commit.
Currently, all casing information (simple and special) are stored in a
compile-time array of size 34,626, then statically copied to a hash map
at runtime. In an effort to reduce the resulting memory usage, store the
simple casing rules in standalone compile-time arrays. The uppercase map
is size 1,450 and the lowercase map is size 1,433. Any code point not in
a map will implicitly have an identity mapping.
Having IDL constructors call FooWrapper::create(impl) directly was
creating a wrapper directly without telling the impl object about the
wrapper. This meant that we had wrapped C++ objects with a null
wrapper() pointer.
This introduces 3 classes: NodeList, StaticNodeList and LiveNodeList.
NodeList is the base of the static and live versions. Static is a
snapshot whereas live acts on the underlying data and thus inhibits
the same issues we have currently with HTMLCollection.
They were split into separate classes to not have them weirdly
mis-mashed together.
The create functions for static and live both return a NNRP to the base
class. This is to prevent having to do awkward casting at creation
and/or return, as the bindings expect to see the base NodeList only.
Instead of setting it to the default object prototype and then
immediately setting it again via internal_set_prototype_of, we can just
set it directly in the parent constructor call.
Since we don't support IDL typedefs or unions yet, the responsibility
of verifying the type of the argument is temporarily moved from the
generated Wrapper to the implementation.
This patch makes both of these classes inherit from RefCounted and
Bindings::Wrappable, plus some minimal rejigging to allow us to keep
using them internally while also exposing them to web content.
This adds support for the [Unscopable] extended attribute to attributes
and functions.
I believe it should be applicable to all interface members, but I
haven't done that here.