With this change, Document now always has a Web::Page. This means we no
longer rely on the breakable link between Document and BrowsingContext
to find a relevant Web::Page.
Fixes#22290
This fixes the issue that occurred when, after clicking an inline
paintable page would always scroll to the top. The problem was that
`scroll_an_element_into_view()` relies on `get_bounding_client_rect()`
to produce the correct scroll position and for inline paintables we
were always returning zero rect before this change.
This change fixes GC-leak caused by following mutual dependency:
- SVGDecodedImageData owns JS::Handle for Page.
- SVGDecodedImageData is owned by visited objects.
by making everything inherited from HTML::DecodedImageData and
ListOfAvailableImages to be GC-allocated.
Generally, if visited object has a handle, very likely we leak
everything visited from object in a handle.
As outlined in: https://www.w3.org/TR/selectors-4/#compat
We now do not treat unknown webkit pseudo-elements as invalid at parse
time, and also support serializing these elements.
Fixes: #21959
No functional impact intended. This is just a more complicated way of
writing what we have now.
The goal of this commit is so that we are able to store the 'name' of a
pseudo element for use in serializing 'unknown -webkit-
pseudo-elements', see:
https://www.w3.org/TR/selectors-4/#compat
This is quite awkward, as in pretty much all cases just the selector
type enum is enough, but we will need to cache the name for serializing
these unknown selectors. I can't figure out any reason why we would need
this name anywhere else in the engine, so pretty much everywhere is
still just passing around this raw enum. But this change will allow us
to easily store the name inside of this new struct for when it is needed
for serialization, once those webkit unknown elements are supported by
our engine.
According to the CSS font matching algorithm specification, it is
supposed to be executed for each glyph instead of each text run, as is
currently done. This change partially implements this by having the
font matching algorithm produce a list of fonts against which each
glyph will be tested to find its suitable font.
Now, it becomes possible to have per-glyph fallback fonts: if the
needed glyph is not present in a font, we can check the subsequent
fonts in the list.
After commit ff48b7333c, we remove shadow
roots from elements that are removed from the DOM. Setting a node's
shadow root to null also sets that shadow root's host to null. Thus, the
comment in Node::is_shadow_including_descendant_of that assumes the host
is always non-null is not true.
The test added here would previously crash when interacting with a node
that is a descendant of a removed shadow root.
`<iframe>` and `<img>` tags share the same spec for several aspects of
lazy-loading: how the `loading` attribute works, the "will lazy load
element" steps, and a member for storing the lazy-load resumption
steps. So let's share the implementation by using a base class.
This mostly involves moving things around. However, we also change the
`start_intersection_observing_a_lazy_loading_element()` method to take
a LazyLoadingElement, and operate on one, instead of always casting to
HTMLImageElement.
We do unfortunately have to do some shenanigans to make the cast work,
by adding a virtual function stub in DOM::Element.
The `page_did_request_scroll_to` API takes a CSS position, and thus
callers should not scale to device pixels before invoking it. Instead,
align this API with (most) other PageHost APIs which scale to device
pixels before sending the corresponding IPC message.
In the AppKit chrome, convert the provided device pixel position to a
widget position.
Ideally we would not create a layout node at all for these elements so
that every layout node would always have a paintable associated with it.
But for now, to fix the crash, just leave a FIXME and special case this
element.
Also leave a VERIFY to make it easier to debug this type of crash in the
future.
Fixes a crash seen on codecov.io for my 'patch' project.
It's perfectly possible for JavaScript to call unobserve() on an element
that hasn't been observed. Let's stop asserting if that happens. :^)
Fixes#22020
Most elements don't have pseudo elements with CSS custom properties.
By only allocating this data structure when it's used, we can shrink
most elements by 208 bytes each. :^)
Most DOM nodes don't have registered mutation observers, so let's put
the metadata about them behind an OwnPtr to save space in the common
case.
Saves 16 bytes per DOM node that doesn't have registered observers.
With this change, we now have ~1200 CellAllocators across both LibJS and
LibWeb in a normal WebContent instance.
This gives us a minimum heap size of 4.7 MiB in the scenario where we
only have one cell allocated per type. Of course, in practice there will
be many more of each type, so the effective overhead is quite a bit
smaller than that in practice.
I left a few types unconverted to this mechanism because I got tired of
doing this. :^)