This class is intended to replace all IOAddress usages in the Kernel
codebase altogether. The idea is to ensure IO can be done in
arch-specific manner that is determined mostly in compile-time, but to
still be able to use most of the Kernel code in non-x86 builds. Specific
devices that rely on x86-specific IO instructions are already placed in
the Arch/x86 directory and are omitted for non-x86 builds.
The reason this works so well is the fact that x86 IO space acts in a
similar fashion to the traditional memory space being available in most
CPU architectures - the x86 IO space is essentially just an array of
bytes like the physical memory address space, but requires x86 IO
instructions to load and store data. Therefore, many devices allow host
software to interact with the hardware registers in both ways, with a
noticeable trend even in the modern x86 hardware to move away from the
old x86 IO space to exclusively using memory-mapped IO.
Therefore, the IOWindow class encapsulates both methods for x86 builds.
The idea is to allow PCI devices to be used in either way in x86 builds,
so when trying to map an IOWindow on a PCI BAR, the Kernel will try to
find the proper method being declared with the PCI BAR flags.
For old PCI hardware on non-x86 builds this might turn into a problem as
we can't use port mapped IO, so the Kernel will gracefully fail with
ENOTSUP error code if that's the case, as there's really nothing we can
do within such case.
For general IO, the read{8,16,32} and write{8,16,32} methods are
available as a convenient API for other places in the Kernel. There are
simply no direct 64-bit IO API methods yet, as it's not needed right now
and is not considered to be Arch-agnostic too - the x86 IO space doesn't
support generating 64 bit cycle on IO bus and instead requires two 2
32-bit accesses. If for whatever reason it appears to be necessary to do
IO in such manner, it could probably be added with some neat tricks to
do so. It is recommended to use Memory::TypedMapping struct if direct 64
bit IO is actually needed.
The APICTimer, HPET and RTC (the RTC timer is in the context of the PC
RTC here) are timers that exist only in x86 platforms, therefore, we
move the handling code and the initialization code to the Arch/x86/Time
directory. Other related code patterns in the TimeManagement singleton
and in the Random.cpp file are guarded with #ifdef to ensure they are
only compiled for x86 builds.
The new VGAIOArbiter class is now responsible to conduct x86-specific
instructions to control VGA hardware from the old ISA ports. This allows
us to ensure the GraphicsManagement code doesn't use x86-specific code,
thus allowing it to be compiled within non-x86 kernel builds.
This device is supposed to be used in microvm and ISA-PC machine types,
and we assume that if we are able to probe for the QEMU BGA version of
0xB0C5, then we have an existing ISA Bochs VGA adapter to utilize.
To ensure we don't instantiate the driver for non isa-vga devices, we
try to ensure that PCI is disabled because hardware IO test probe failed
so we can be sure that we use this special handling code only in the
QEMU microvm and ISA-PC machine types. Unfortunately, this means that if
for some reason the isa-vga device is attached for the i440FX or Q35
machine types, we simply are not able to drive the device in such setups
at all.
To determine the amount of VRAM being available, we read VBE register at
offset 0xA. That register holds the amount of VRAM divided by 64K, so we
need to multiply the value in our code to use the actual VRAM size value
again.
The isa-vga device requires us to hardcode the framebuffer physical
address to 0xE0000000, and that address is not expected to change in the
future as many other projects rely on the isa-vga framebuffer to be
present at that physical memory address.
We should aim to reliably determine if PCI hardware exists or not, and
we should consider the ACPI MCFG table in that test. Although it is
unusual to see an hardware setup where the PCI host bridge does not
respond to x86 IO instructions, it is expected to happen at least on the
QEMU microvm machine type as the host bridge only responds to memory
mapped IO requests. Therefore, we first test if ACPI is enabled, and we
try to use it to fetch the MCFG table. Later on we could also add FDT
parsing as part of the PCI IO test which would be useful for the QEMU
microvm machine type.
The code in init.cpp is specific to the x86 initialization sequence, so
move it to the Arch/x86 directory in the same fashion like the aarch64
pattern.
The PIC and APIC code are specific to x86 platforms, so move them out of
the general Interrupts directory to Arch/x86/common/Interrupts directory
instead.
That code heavily relies on x86-specific instructions, and while other
CPU architectures and platforms can have PCI IDE controllers, currently
we don't support those, so this code is a special case which needs to be
in the Arch/x86 directory.
In the future it could be put back to the original place when we make it
more generic and suitable for other platforms.
The i8042 controller with its attached devices, the PS2 keyboard and
mouse, rely on x86-specific IO instructions to work. Therefore, move
them to the Arch/x86 directory to make it easier to omit the handling
code of these devices.
The ISA IDE controller code makes sense to be compiled in a x86 build as
it relies on access to the x86 IO space. For other architectures, we can
just omit the code as there's no way we can use that code again.
To ensure we can omit the code easily, we move it to the Arch/x86
directory.
The VMWare backdoor handling code involves many x86-specific
instructions and therefore should be in the Arch/x86 directory. This
ensures we can easily omit the code in compile-time for non-x86 builds.
It seems more correct to let each platform to define its own sequence of
initialization of the PCI bus, so let's remove the #if flags and just
put the entire Initializer.cpp file in the appropriate code directory.
The simple PCI::HostBridge class implements access to the PCI
configuration space by using x86 IO instructions. Therefore, it should
be put in the Arch/x86/PCI directory so it can be easily omitted for
non-x86 builds.
kprintf should not really care about the hardware-specific details of
each UART or serial port out there, so instead of using x86 specific
instructions, let's ensure that we will compile only the relevant code
for debug output for a targeted-specific platform.
The RTC and CMOS are currently only supported for x86 platforms and use
specific x86 instructions to produce only certain x86 plaform operations
and results, therefore, we move them to the Arch/x86 specific directory.
Many code patterns and hardware procedures rely on reliable delay in the
microseconds granularity, and since they are using such delays which are
valid cases, but should not rely on x86 specific code, we allow to
determine in compile time the proper platform-specific code to use to
invoke such delays.
We move QEMU and VirtualBox shutdown sequences to a separate file, as
well as moving the i8042 reboot code sequence too to another file.
This allows us to abstract specific methods from the power state node
code of the SysFS filesystem, to allow other architectures to put their
methods there too in the future.
According to Dr. POSIX, we should allow to call mmap on inodes even on
ranges that currently don't map to any actual data. Trying to read or
write to those ranges should result in SIGBUS being sent to the thread
that did violating memory access.
Now that the Spinlock code is not dependent on architectural specific
code anymore, we can move it back to the Locking folder. This also means
that the Spinlock implemenation is now used for the aarch64 kernel.
This commit updates the lock function from Spinlock and
RecursiveSpinlock to return the InterruptsState of the processor,
instead of the processor flags. The unlock functions would only look at
the interrupt flag of the processor flags, so we now use the
InterruptsState enum to clarify the intent, and such that we can use the
same Spinlock code for the aarch64 build.
To not break the build, all the call sites are updated aswell.
This commit adds the concept of an InterruptsState to the kernel. This
will be used to make the Spinlock code architecture independent. A new
Processor.cpp file is added such that we don't have to duplicate the
code.
This forces anyone who wants to look into and/or manipulate an address
space to lock it. And this replaces the previous, more flimsy, manual
spinlock use.
Note that pointers *into* the address space are not safe to use after
you unlock the space. We've got many issues like this, and we'll have
to track those down as wlel.
By default these 2 fields were zero, which made it rely on
implementation defined behavior whether these fields internally would be
set to the correct value. The ARM processor in the Raspberry PI (and
QEMU 6.x) would actually fixup these values, whereas QEMU 7.x now does
not do that anymore, and a translation fault would be generated instead.
For more context see the relevant QEMU issue:
- https://gitlab.com/qemu-project/qemu/-/issues/1157Fixes#14856
You're still required to disable interrupts though, as the mappings are
per-CPU. This exposed the fact that our CR3 lookup map is insufficiently
protected (but we'll address that in a separate commit.)
Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:
- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable
This patch renames the Kernel classes so that they can coexist with
the original AK classes:
- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable
The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
Instead of having two separate implementations of AK::RefCounted, one
for userspace and one for kernelspace, there is now RefCounted and
AtomicRefCounted.
All users which relied on the default constructor use a None lock rank
for now. This will make it easier to in the future remove LockRank and
actually annotate the ranks by searching for None.
Unlike Clang, GCC does not support 8-byte atomics on i686 with the
-mno-80387 flag set, so until that is fixed, implement a minimal set of
atomics that are currently required.
As soon as we've saved CR2 (the faulting address), we can re-enable
interrupt processing. This should make the kernel more responsive under
heavy fault loads.
To ensure that we stay on the same CPU that acquired the spinlock until
we're completely unlocked, we now leave the critical section *before*
re-enabling interrupts.
This fixes an issue where we could get preempted after acquiring the
current Processor pointer, but before calling methods on it.
I strongly suspect this was the cause of "Processor::current() == this"
assertion failures.