Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:
- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable
This patch renames the Kernel classes so that they can coexist with
the original AK classes:
- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable
The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
Instead of having two separate implementations of AK::RefCounted, one
for userspace and one for kernelspace, there is now RefCounted and
AtomicRefCounted.
All users which relied on the default constructor use a None lock rank
for now. This will make it easier to in the future remove LockRank and
actually annotate the ranks by searching for None.
This enum was created to help put distinction between the commandset and
the interface type, as ATAPI devices are simply ATA devices utilizing
the SCSI commandset. Because we don't support ATAPI, putting such type
of distinction is pointless, so let's remove this for now.
We don't really support ATAPI (SCSI packets over ATA channels) and it's
uncertain if we ever will support such type of media. For this reason,
there's basically no reason to keep this code.
If we ever introduce ATAPI support into the Kernel, we can simply put
this back into the codebase.
In the near future, we will be able to figure out connections between
storage devices and their partitions, so there's no need to hardcode 16
partitions per storage device - each storage device should be able to
have "infinite" count of partitions in it, and we should be able to use
and figure out about them.
We should actually start counting from the parent directory and not from
the symbolic link as it will represent a wrong count of hops from the
actual mountpoint.
The symlinks in /sys/dev/block and /sys/dev/char worked only by luck,
because I have set it to the wrong parent directory which is the
/sys/dev directory, so with the symlink it was 3 hops to /sys, together
with the root directory, therefore, everything seemed to work.
Now that the device symlinks in /sys/dev/block and /sys/dev/char are set
to the right parent directory and we start measure hops from root
directory with the parent directory of a symlink, everything seem to
work correctly now.
Everything in Kernel/Storage/Partition but DiskPartition has been moved
into LibPartiton. This makes the Partition directory unnecessary so
DiskPartition is moved up into Kernel/Storage.
This commit creates a new library LibPartition which will contain
partition related code sharable between Kernel and Userland and
includes DiskPartitionMetadata as the first shared class.
IDEChannel which is an ATAPort derived class holded a NonnullRefPtr to a
parent IDEController, although we can easily defer the usage of it to
not be in the IDEChannel code at all, so it allows to keep NonnullRefPtr
to the parent ATAController in the ATAPort base class and only there.
This abstraction layer is mainly for ATA ports (AHCI ports, IDE ports).
The goal is to create a convenient and flexible framework so it's
possible to expand to support other types of controller (e.g. Intel PIIX
and ICH IDE controllers) and to abstract operations that are possible on
each component.
Currently only the ATA IDE code is affected by this, making it much
cleaner and readable - the ATA bus mastering code is moved to the
ATAPort code so more implementations in the near future can take
advantage of such functionality easily.
In addition to that, the hierarchy of the ATA IDE code resembles more of
the SATA AHCI code now, which means the IDEChannel class is solely
responsible for getting interrupts, passing them for further processing
in the ATAPort code to take care of the rest of the handling logic.
We do that to increase clarity of the major and secondary components in
the subsystem. To ensure it's even more understandable, we rename the
files to better represent the class within them and to remove redundancy
in the name.
Also, some includes are removed from the general components of the ATA
components' classes.
It is starting to get a little messy with how each device can try to add
or remove itself to either /sys/dev/block or /sys/dev/char directories.
To better do this, we introduce 4 virtual methods to take care of that,
so until we ensure all nodes in /sys/dev/block and /sys/dev/char are
actual symlinks, we allow the Device base class to call virtual methods
upon insertion or before being destroying, so it add itself elegantly to
either of these directories or remove itself when needed.
For special cases where we need to create symlinks, we have two virtual
methods to be called otherwise to do almost the same thing mentioned
before, but to use symlinks instead.
This change in fact does the following:
1. Use support for symlinks between /sys/dev/block/ storage device
identifier nodes and devices in /sys/devices/storage/{LUN}.
2. Add basic nodes in a /sys/devices/storage/{LUN} directory, to let
userspace to know about the device and its details.
LUN address is essentially how people used to address SCSI devices back
in the day we had these devices more in use. However, SCSI was taken as
an abstraction layer for many Unix and Unix-like systems, so it still
common to see LUN addresses in use. In Serenity, we don't really provide
such abstraction layer, and therefore until now, we didn't use LUNs too.
However (again), this changes, as we want to let users to address their
devices under SysFS easily. LUNs make sense in that regard, because they
can be easily adapted to different interfaces besides SCSI.
For example, for legacy ATA hard drive being connected to the first IDE
controller which was enumerated on the PCI bus, and then to the primary
channel as slave device, the LUN address would be 0:0:1.
To make this happen, we add unique ID number to each StorageController,
which increments by 1 for each new instance of StorageController. Then,
we adapt the ATA and NVMe devices to use these numbers and generate LUN
in the construction time.
This bug was probably around for a very long time, but it is noticeable
only under VirtualBox as it generated an non fatal error which caused a
kernel panic because we VERIFYed the wrong lock to be locked.
There's no real value in separating physical pages to supervisor and
user types, so let's remove the concept and just let everyone to use
"user" physical pages which can be allocated from any PhysicalRegion
we want to use. Later on, we will remove the "user" prefix as this
prefix is not needed anymore.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
The initialize_hba method now calls the reset method to reset the HBA
and initialize each AHCIPort. Also, after full HBA reset we need to turn
on the AHCI functionality of the HBA and global interrupts since they
are cleared to 0 according to the specification in the GHC register.
Instead of doing this in a parent class like the AHCIController, let's
do that directly in the AHCIPort class as that class is the only user of
these sort of physical pages. While it seems like we waste an entire 4KB
of physical RAM for each allocation, this could serve us later on if we
want to fetch other types of logs from the ATA device.
The way AHCIPortHandler held AHCIPorts and even provided them with
physical pages for the ATA identify buffer just felt wrong.
To fix this, AHCIPortHandler is not a ref-counted object anymore. This
solves the big part of the problem, because AHCIPorts can't hold a
reference to this object anymore, only the AHCIController can do that.
Then, most of the responsibilities are shifted to the AHCIController,
making the AHCIPortHandler a handler of port interrupts only.
The AHCI code is not very good at OOM conditions, so this is a first
step towards OOM correctness. We should not allocate things inside C++
constructors because we can't catch OOM failures, so most allocation
code inside constructors is exported to a different function.
Also, don't use a HashMap for holding RefPtr of AHCIPort objects in
AHCIPortHandler because this structure is not very OOM-friendly. Instead
use a fixed Array of 32 RefPtrs, as at most we can have 32 AHCI ports
per AHCI controller.
That code used the old AK::Result container, which leads to overly
complicated initialization flow when trying to figure out the correct
partition table type. Instead, when using the ErrorOr container the code
is much simpler and more understandable.
In most cases it's safe to abort the requested operation and go forward,
however, in some places it's not clear yet how to handle these failures,
therefore, we use the MUST() wrapper to force a kernel panic for now.
The current implementation of read/write will fail in StorageDevice
when the request length is less than the block size of the underlying
device. Fix it by calculating the offset within a block for such cases
and using it for copying data from the bounce buffer.
The underlying driver does not need to recalculate the buffer size as
it is passed in the AsyncBlockDevice struct anyway. This also helps in
removing any assumptions of the underlying block size of the device.
This class already has variables named m_lock, and it's also strange
that locals are named with the `m_` prefix. So lets fix that to make
the code more readable.
Found by PVS-Studio.