This class is intended to replace all IOAddress usages in the Kernel
codebase altogether. The idea is to ensure IO can be done in
arch-specific manner that is determined mostly in compile-time, but to
still be able to use most of the Kernel code in non-x86 builds. Specific
devices that rely on x86-specific IO instructions are already placed in
the Arch/x86 directory and are omitted for non-x86 builds.
The reason this works so well is the fact that x86 IO space acts in a
similar fashion to the traditional memory space being available in most
CPU architectures - the x86 IO space is essentially just an array of
bytes like the physical memory address space, but requires x86 IO
instructions to load and store data. Therefore, many devices allow host
software to interact with the hardware registers in both ways, with a
noticeable trend even in the modern x86 hardware to move away from the
old x86 IO space to exclusively using memory-mapped IO.
Therefore, the IOWindow class encapsulates both methods for x86 builds.
The idea is to allow PCI devices to be used in either way in x86 builds,
so when trying to map an IOWindow on a PCI BAR, the Kernel will try to
find the proper method being declared with the PCI BAR flags.
For old PCI hardware on non-x86 builds this might turn into a problem as
we can't use port mapped IO, so the Kernel will gracefully fail with
ENOTSUP error code if that's the case, as there's really nothing we can
do within such case.
For general IO, the read{8,16,32} and write{8,16,32} methods are
available as a convenient API for other places in the Kernel. There are
simply no direct 64-bit IO API methods yet, as it's not needed right now
and is not considered to be Arch-agnostic too - the x86 IO space doesn't
support generating 64 bit cycle on IO bus and instead requires two 2
32-bit accesses. If for whatever reason it appears to be necessary to do
IO in such manner, it could probably be added with some neat tricks to
do so. It is recommended to use Memory::TypedMapping struct if direct 64
bit IO is actually needed.
This device is supposed to be used in microvm and ISA-PC machine types,
and we assume that if we are able to probe for the QEMU BGA version of
0xB0C5, then we have an existing ISA Bochs VGA adapter to utilize.
To ensure we don't instantiate the driver for non isa-vga devices, we
try to ensure that PCI is disabled because hardware IO test probe failed
so we can be sure that we use this special handling code only in the
QEMU microvm and ISA-PC machine types. Unfortunately, this means that if
for some reason the isa-vga device is attached for the i440FX or Q35
machine types, we simply are not able to drive the device in such setups
at all.
To determine the amount of VRAM being available, we read VBE register at
offset 0xA. That register holds the amount of VRAM divided by 64K, so we
need to multiply the value in our code to use the actual VRAM size value
again.
The isa-vga device requires us to hardcode the framebuffer physical
address to 0xE0000000, and that address is not expected to change in the
future as many other projects rely on the isa-vga framebuffer to be
present at that physical memory address.
The AHCI code doesn't rely on x86 IO at all as it only uses memory
mapped IO so we can simply remove the header.
We also simply don't use x86 IO in the Intel graphics driver, so we can
simply remove the include of the x86 IO header there too.
Everything else was a bunch of stale includes to the x86 IO header and
are actually not necessary, so let's remove them to make it easier to
compile non-x86 Kernel builds.
It seems more correct to let each platform to define its own sequence of
initialization of the PCI bus, so let's remove the #if flags and just
put the entire Initializer.cpp file in the appropriate code directory.
The simple PCI::HostBridge class implements access to the PCI
configuration space by using x86 IO instructions. Therefore, it should
be put in the Arch/x86/PCI directory so it can be easily omitted for
non-x86 builds.
Using the IO address space is only relevant for x86 machines, so let's
not compile instructions to access the PCI configuration space when we
don't target x86 platforms.
All users which relied on the default constructor use a None lock rank
for now. This will make it easier to in the future remove LockRank and
actually annotate the ranks by searching for None.
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
This is mainly useful when adding an HostController but due to OOM
condition, we abort temporary Vector insertion of a DeviceIdentifier
and then exit the iteration loop to report back the error if occured.
Instead, hold the lock while we copy the contents to a stack-based
Vector then iterate on it without any locking.
Because we rely on heap allocations, we need to propagate errors back
in case of OOM condition, therefore, both PCI::enumerate API function
and PCI::Access::add_host_controller_and_enumerate_attached_devices use
now a ErrorOr<void> return value to propagate errors. OOM Error can only
occur when enumerating the m_device_identifiers vector under a spinlock
and trying to expand the temporary Vector which will be used locklessly
to actually iterate over the PCI::DeviceIdentifiers objects.
Reading from /proc/pci assumes we have PCI enabled and also enumerated.
However, if PCI is disabled for some reason, we can't allow the user to
read from it as there's no valuable data we can supply.
To declare that we don't have a PCI bus in the system we do two things:
1. Probe IO ports before enabling access -
In case we are using the QEMU ISA-PC machine type, IO probing results in
floating bus condition (returning 0xFF values), thus, we know we don't
have PCI bus on the system.
2. Allow the user to specify to not use the PCI bus at all in the kernel
commandline.
This change allow the user to request the kernel to not use any PCI
resources/devices at all.
Also, don't try to initialize devices that rely on PCI if disabled.
There can only be a limited number of functions (only 8).
Also, consider the start bus of the PCI domain when trying to enumerate
other host bridges on bus 0, device 0, functions 1-7 (function 0 is the
main host bridge).
This mostly just moved the problem, as a lot of the callers are not
capable of propagating the errors themselves, but it's a step in the
right direction.
Two classes are added - HostBridge and MemoryBackedHostBridge, which
both derive from HostController class. This allows the kernel to map
different busses from different PCI domains in the same time. Each
HostController implementation doesn't take the Address object to address
PCI devices but instead we take distinct numbers of the PCI bus, device
and function as it allows us to specify arbitrary PCI domains in the
Address structure and still to get the correct PCI devices. This also
matches the hardware behavior of PCI domains - the host bridge merely
takes memory operations or IO operations and translates them to
addressing of three components - PCI bus, device and function.
These changes also greatly simplify how enumeration of Host Bridges work
now - scanning of the hardware depends on what the Host bridges can do
for us, so in case we have multiple host bridges that expose a memory
mapped region or IO ports to access PCI configuration space, we simply
let the code of the host bridge to figure out how to fetch data for us.
Another semantical change is that a PCI domain structure is no longer
attached to a PhysicalAddress, so even in the case that the machine
doesn't implement PCI domains, we still treat that machine to contain 1
PCI domain to treat that one host bridge in the same way, like with a
machine with one or more PCI domains.
Add a basic NVMe driver support to serenity
based on NVMe spec 1.4.
The driver can support multiple NVMe drives (subsystems).
But in a NVMe drive, the driver can support one controller
with multiple namespaces.
Each core will get a separate NVMe Queue.
As the system lacks MSI support, PIN based interrupts are
used for IO.
Tested the NVMe support by replacing IDE driver
with the NVMe driver :^)
Instead, allocate before constructing the object and pass NonnullOwnPtr
of KString to the object if needed. Some classes can determine their
names as they have a known attribute to look for or have a static name.
There is no use to create a temporary String of a char const* to just
cast it to a StringView on SysFSComponent construction again.
Also this could have lead to a UAF bug.
This isn't a complete conversion to ErrorOr<void>, but a good chunk.
The end goal here is to propagate buffer allocation failures to the
caller, and allow the use of TRY() with formatting functions.
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)