This will be inherited by "legacy platform objects", i.e objects that
need to hijack indexed and/or named property access as described in the
IDL spec: https://webidl.spec.whatwg.org/#dfn-legacy-platform-object
Instead of overriding JS::Object virtuals, subclasses only need to
implement a very simple interface for property queries.
Note that this code is taken verbatim from code generator output.
I didn't write any of this now, so it's effectively "moved" code.
Currently, LibUnicodeData contains the generated UCD and CLDR data. Move
the UCD data to the main LibUnicode library, and rename LibUnicodeData
to LibLocaleData. This is another prepatory change to migrate to
LibLocale.
This removes the requirement of having a global object that actually
inherits from JS::GlobalObject, which is now a perfectly valid scenario.
With the upcoming removal of wrapper objects in LibWeb, the HTML::Window
object will inherit from DOM::EventTarget, which means it cannot also
inherit from JS::GlobalObject.
Also added a local test for ensuring this behavior since it is unique to
browsers. Since we don't actually use WindowProxy anywhere yet we just
test on location for now.
Intrinsics, i.e. mostly constructor and prototype objects, but also
things like empty and new object shape now live on a new heap-allocated
JS::Intrinsics object, thus completing the long journey of taking all
the magic away from the global object.
This represents the Realm's [[Intrinsics]] slot in the spec and matches
its existing [[GlobalObject]] / [[GlobalEnv]] slots in terms of
architecture.
In the majority of cases it should now be possibly to fully allocate a
regular object without the global object existing, and in fact that's
what we do now - the realm is allocated before the global object, and
the intrinsics between both :^)
Instead we just use a specific constructor. With this set of
constructors using curly braces for constructing is highly recommended.
As then it will not do too many implicit conversions which could lead to
unexpected loss of data or calling the much slower double constructor.
Also to ensure we don't feed (Un)SignedBigInteger infinities we throw
RangeError earlier for Durations.
This commit fixes a bug found when passing exotic values in the
grid-template-columns (or grid-template-rows) which are not yet
supported.
The bug seems to have been something like:
grid-template-columns: 0 minmax(0, calc(10px - var(--some-color)));
The protocol of the origin is used for checking if the a file://
iframe is allowed to be loaded (a document with a file:// origin
can load other files in iframes).
This used to be the case, but was changed in
6e71e400e6, which broke file:// iframes.
This is a really starter attempt at formatting the grid. It doesn't yet
take into account the computed_values of grid-template-rows, nor the
values in grid-column-start and like CSS properties.
But these changes are a start and make it so the examples in
display-grid.html work.
To be fleshed out further..
Add functionality to begin parsing grid-template-columns and
grid-template-rows. There are still things to be added, like parsing
functions, but I would say a couple of the major points are already
adressed like length, percentage, and flexible-length.
Removing the FIXME'd code in b99cc7d was a bit too eager, and relying on
the main thread VM's current realm only works when JS is being executed.
Restore a simplified version of the old code to determine the realm this
time instead of the global object, following the assumptions already
made in get_current_value_of_event_handler() regarding what kind of
event target 'this' can be.
- Prefer VM::current_realm() over GlobalObject::associated_realm()
- Prefer VM::heap() over GlobalObject::heap()
- Prefer Cell::vm() over Cell::global_object()
- Prefer Wrapper::vm() over Wrapper::global_object()
- Inline Realm::global_object() calls used to access intrinsics as they
will later perform a direct lookup without going through the global
object
This is needed so that the allocated NativeFunction receives the correct
realm, usually forwarded from the Object's initialize() function, rather
than using the current realm.
Global object initialization is tightly coupled to realm creation, so
simply pass it to the function instead of relying on the non-standard
'associated realm' concept, which I'd like to remove later.
This works essentially the same way as regular Object::initialize() now.
Additionally this allows us to forward the realm to GlobalObject's
add_constructor() / initialize_constructor() helpers, so they set the
correct realm on the allocated constructor function object.
Similar to create() in LibJS, wrap() et al. are on a low enough level to
warrant passing a Realm directly instead of relying on the current realm
from the VM, as a wrapper may need to be allocated while no JS is being
executed.
This is a continuation of the previous six commits.
The global object is only needed to return it if the execution context
stack is empty, but that doesn't seem like a useful thing to allow in
the first place - if you're not currently executing JS, and the
execution context stack is empty, there is no this value to retrieve.
This is a continuation of the previous five commits.
A first big step into the direction of no longer having to pass a realm
(or currently, a global object) trough layers upon layers of AOs!
Unlike the create() APIs we can safely assume that this is only ever
called when a running execution context and therefore current realm
exists. If not, you can always manually allocate the Error and put it in
a Completion :^)
In the spec, throw exceptions implicitly use the current realm's
intrinsics as well: https://tc39.es/ecma262/#sec-throw-an-exception
This is a continuation of the previous three commits.
Now that create() receives the allocating realm, we can simply forward
that to allocate(), which accounts for the majority of these changes.
Additionally, we can get rid of the realm_from_global_object() in one
place, with one more remaining in VM::throw_completion().
This is a continuation of the previous two commits.
As allocating a JS cell already primarily involves a realm instead of a
global object, and we'll need to pass one to the allocate() function
itself eventually (it's bridged via the global object right now), the
create() functions need to receive a realm as well.
The plan is for this to be the highest-level function that actually
receives a realm and passes it around, AOs on an even higher level will
use the "current realm" concept via VM::current_realm() as that's what
the spec assumes; passing around realms (or global objects, for that
matter) on higher AO levels is pointless and unlike for allocating
individual objects, which may happen outside of regular JS execution, we
don't need control over the specific realm that is being used there.
This is a continuation of the previous commit.
Calling initialize() is the first thing that's done after allocating a
cell on the JS heap - and in the common case of allocating an object,
that's where properties are assigned and intrinsics occasionally
accessed.
Since those are supposed to live on the realm eventually, this is
another step into that direction.
No functional changes - we can still very easily get to the global
object via `Realm::global_object()`. This is in preparation of moving
the intrinsics to the realm and no longer having to pass a global
object when allocating any object.
In a few (now, and many more in subsequent commits) places we get a
realm using `GlobalObject::associated_realm()`, this is intended to be
temporary. For example, create() functions will later receive the same
treatment and are passed a realm instead of a global object.