Note that these aren't full implementations of the bindings. This
mostly implements the low hanging fruit (namely, basic reflections)
There are some attributes that should be USVString instead of
DOMString. However, USVString is a slightly different definition
of DOMString, so it should suffice for now.
LibWeb keeps growing and the Web namespace is filling up fast.
Let's put DOM stuff into Web::DOM, just like we already started doing
with SVG stuff in Web::SVG.
btoa() takes a byte string, so it must decode the UTF-8 argument into
a Vector<u8> before calling encode_base64.
Likewise, in atob() decode_base64 returns a byte string, so that needs
to be converted to UTF-8.
With this, `btoa(String.fromCharCode(255))` is '/w==' as it should
be, and `atob(btoa(String.fromCharCode(255))) == String.fromCharCode(255)`
remains true.
This allows us to determine which mode to render the page in.
Exposes "doctype" and "compatMode" on Document.
Exposes "name", "publicId" and "systemId" on DocumentType.
This patch adds a Web::Timer object that represents a single timer
registration made with window.setTimeout() or window.setInterval().
All live timers are owned by the DOM Window object.
The timers can be stopped via clearTimeout() or clearInterval().
Note that those API's are actually interchangeable, but we have to
support both.
Divide the Object constructor into three variants:
- The regular one (takes an Object& prototype)
- One for use by GlobalObject
- One for use by objects without a prototype (e.g ObjectPrototype)
Instead of taking the JS::Heap&. This allows us to get rid of some
calls to JS::Interpreter::global_object(). We're getting closer and
closer to multiple global objects. :^)
We're still missing optional argument support, so this implementation
doesn't support fill(), only fill(fill_rule).
Still it's really nice to get rid of so much hand-written wrapper code.
We still have to hand-write a function to turn an Event& into a wrapper
but this is still a hue improvement. Eventually we'll find a way to
auto-generate that function as well.
To allow implementing the DOM class hierarchy in JS bindings, this
patch adds an inherits() function that can be used to ask an Object
if it inherits from a specific C++ class (by name).
The necessary overrides are baked into each Object subclass by the
new JS_OBJECT macro, which works similarly to C_OBJECT in LibCore.
Thanks to @Dexesttp for suggesting this approach. :^)
Instead of only checking the class_name(), we now generate an is_foo()
virtual in the wrapper generator. (It's currently something we override
on Bindings::Wrapper, which is not really scalable.)
Longer term we'll need to think up something smarter for verifying that
one wrapper "is" another type of wrapper.
This patch introduces a hackish but functional IDL parser and uses it
to generate the JS bindings for Node and Document.
We'll see how far this simple parser takes us. The important thing
right now is generating code, not being a perfect IDL parser. :^)
To make sure that everything is set up correctly in objects before we
start adding properties to them, we split cell allocation into 3 steps:
1. Allocate a cell of appropriate size from the Heap
2. Call the C++ constructor on the cell
3. Call initialize() on the constructed object
The job of initialize() is to define all the initial properties.
Doing it in a second pass guarantees that the Object has a valid Shape
and can find its own GlobalObject.
More work towards supporting multiple global objects. Native C++ code
now get a GlobalObject& and don't have to ask the Interpreter for it.
I've added macros for declaring and defining native callbacks since
this was pretty tedious and this makes it easier next time we want to
change any of these signatures.
The more generic virtual variant is renamed to node_name() and now only
Element has tag_name(). This removes a huge amount of String ctor/dtor
churn in selector matching.
Objects should get the GlobalObject from themselves instead. However,
it's not yet available during construction so this only switches code
that happens after construction.
To support multiple global objects, Interpreter needs to stop holding
on to "the" global object and let each object graph own their global.
Returning it by reference can lead to unpleasant situations if we use
this getter when the document may go away. Better to make the getter
return a copy than have to think about this everywhere.
This patch adds an IndexedProperties object for storing indexed
properties within an Object. This accomplishes two goals: indexed
properties now have an associated descriptor, and objects now gracefully
handle sparse properties.
The IndexedProperties class is a wrapper around two other classes, one
for simple indexed properties storage, and one for general indexed
property storage. Simple indexed property storage is the common-case,
and is simply a vector of properties which all have attributes of
default_attributes (writable, enumerable, and configurable).
General indexed property storage is for a collection of indexed
properties where EITHER one or more properties have attributes other
than default_attributes OR there is a property with a large index (in
particular, large is '200' or higher).
Indexed properties are now treated relatively the same as storage within
the various Object methods. Additionally, there is a custom iterator
class for IndexedProperties which makes iteration easy. The iterator
skips empty values by default, but can be configured otherwise.
Likewise, it evaluates getters by default, but can be set not to.
Previously, the Object class had many different types of functions for
each action. For example: get_by_index, get(PropertyName),
get(FlyString). This is a bit verbose, so these methods have been
shortened to simply use the PropertyName structure. The methods then
internally call _by_index if necessary. Note that the _by_index
have been made private to enforce this change.
Secondly, a clear distinction has been made between "putting" and
"defining" an object property. "Putting" should mean modifying a
(potentially) already existing property. This is akin to doing "a.b =
'foo'".
This implies two things about put operations:
- They will search the prototype chain for setters and call them, if
necessary.
- If no property exists with a particular key, the put operation
should create a new property with the default attributes
(configurable, writable, and enumerable).
In contrast, "defining" a property should completely overwrite any
existing value without calling setters (if that property is
configurable, of course).
Thus, all of the many JS objects have had any "put" calls changed to
"define_property" calls. Additionally, "put_native_function" and
"put_native_property" have had their "put" replaced with "define".
Finally, "put_own_property" has been made private, as all necessary
functionality should be exposed with the put and define_property
methods.
Instead of creating extremely common FlyStrings like "id" and "class"
on demand every time they are needed, we now have AttributeNames.h,
which provides Web::HTML::AttributeNames::{id,class_}
This avoids a bunch of string allocations during selector matching.