We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
This implements the fastest seeking mode available for tracks with cues
using an array of cue points for each track. It approximates the index
based on the seeking timestamp and then finds the earliest cue point
before the timestamp. The approximation assumes that cues will be on
a regular interval, which I don't believe is always the case, but it
should at least be faster than iterating the whole set of cue points
each time.
Cues are stored per track, but most videos will only have cue points
for the video track(s) that are present. For now, this assumes that it
should only seek based on the cue points for the selected track. To
seek audio in a video file, we should copy the seeked iterator over to
the audio track's iterator after seeking is complete. The iterator will
then skip to the next audio block.
Tracks have a timestamp scale value that should be present which scales
each block's timestamp offset to allow video to be synced with audio.
They should also contain a CodecDelay element and may also contain a
TrackOffset that offsets the block timestamps.
Now that we're able to find the nearest keyframe, we can have a fast
seeking mode that only seeks to keyframes, so that it doesn't have to
also decode inter frames until it reaches the timestamp.
The default is still accurate seeking, so that the entire seeking
implementation can be tested.
This just searches sequentially through each block in a SampleIterator
until it finds a block after the specified seek timestamp. Once it
finds one, it will try to set the input/output iterator to the most
recent keyframe. If the iterator's original position is closer to the
target, however, it leaves it at that original position, allowing
callers to continue decoding from that position until they reach the
target timestamp.
This implements the PlaybackManager portion of seeking, so that it can
seek to any frame in the video by dropping all preceding frames until
it reaches the seek point.
MatroskaDemuxer currently will only seek to the start of the video.
That means that every seek has to drop all the frames until it comes
across the target timestamp.
With these changes, the seek bar can be used, but only to seek to the
start of the file. Seeking to anywhere else in the file will cause an
error in the demuxer.
The timestamp label that was previously invisible now has its text set
according to either the playback or seek slider's position.
The Demuxer class was changed to return errors for more functions so
that all of the underlying reading can be done lazily. Other than that,
the demuxer interface is unchanged, and only the underlying reader was
modified.
The MatroskaDocument class is no more, and MatroskaReader's getter
functions replace it. Every MatroskaReader getter beyond the Segment
element's position is parsed lazily from the file as needed. This means
that all getter functions can return DecoderErrors which must be
handled by callers.
Making these functions static makes it easier to implement lazy-loading
since the parsing functions can now be called at any time.
The functions were reorganized because they were not defined in the
order they are called. However, instead of moving every function to
that order, I've declared some but defined them further into the file,
which allows the next commit's diff to be more readable.
Matroska::Reader functions now return DecoderErrorOr instead of values
being declared Optional. Useful errors can be handled by the users of
the parser, similarly to the VP9 decoder. A lot of the error checking
in the reader is a lot cleaner thanks to this change, since all reads
can be range checked in Streamer::read_octet() now.
Most functions for the Streamer class are now also out-of-line in
Reader.cpp now instead of residing in the header.
As new demuxers are added, this will get quite full of files, so it'll
be good to have a separate folder for these.
To avoid too many chained namespaces, the Containers subdirectory is
not also a namespace, but the Matroska folder is for the sake of
separating the multiple classes for parsed information entering the
Video namespace.