* Change the register structures to use the volatile keyword explicitly
on the register values. This avoids accidentally omitting it as any
access will be guaranteed volatile.
* Don't assume we can read/write 64 bit value to the main counter and
the comparator. Not all HPET implementations may support this. So,
just use 32 bit words to access the registers. This ultimately works
around a bug in Bochs 2.6.11 that loses 32 bits of a 64 bit write to
a timer's comparator register (it internally writes one half and
clears the Tn_VAL_SET_CNF bit, and then because it's cleared it
fails to write the second half).
* Properly calculate the tick duration in calculate_ticks_in_nanoseconds
* As per specification, changing the frequency of one periodic timer
requires a restart of all periodic timers as it requires the main
counter to be reset.
This allows issuing asynchronous requests for devices and waiting
on the completion of the request. The requests can cascade into
multiple sub-requests.
Since IRQs may complete at any time, if the current process is no
longer the same that started the process, we need to swich the
paging context before accessing user buffers.
Change the PATA driver to use this model.
Because allocating/freeing regions may require locks that need to
wait on other processors for completion, this needs to be delayed
until it's safer. Otherwise it is possible to deadlock because we're
holding the global heap lock.
Function calls that are deferred will be executed before a thread
enters a pre-emptable state (meaning it is not in a critical section
and it is not in an irq handler). If it is not already in such a
state, it will be called immediately.
This is meant to be used from e.g. IRQ handlers where we might want
to block a thread until an interrupt happens.
If you try to do this (e.g "mv directory directory"), sys$rename() will
now fail with EDIRINTOSELF.
Dr. POSIX says we should return EINVAL for this, but a custom error
code allows us to print a much more helpful error message when this
problem occurs. :^)
Remapping these registers every time we try to read from or write to
them causes a lot of SMP broadcasts and a lot of other overhead.
This improves boot time noticeably.
Instead of mapping a 4KB region to access device configuration space
each time we call one of the PCI helpers, just map them once during
the boot process.
Then, if we request to access one of those devices, we can ask the
PCI subsystem to give us the virtual address where the device's
configuration space is mapped.
We were stripping the L3 headers from packets received on raw sockets.
This didn't match what other systems do, so let's adjust our behavior.
Thanks to @SpencerCDixon for noticing this! :^)
g_scheduler_lock cannot safely be acquired after Thread::m_lock
because another processor may already hold g_scheduler_lock and wait
for the same Thread::m_lock.
It's possible that we broadcast an IPI message right at the same time
another processor requests a halt. Rather than spinning forever waiting
for that message to be handled, check if we should halt while waiting.
This enables the APIC timer on all CPUs, which means Scheduler::timer_tick
is now called on all CPUs independently. We still don't do anything on
the APs as it instantly crashes due to a number of other problems.
This makes it possible to start _everything_ under UserspaceEmulator, by
setting `init_args` to `--report-to-debug,/bin/SystemServer` and `init`
to `/bin/UserspaceEmulator`.
With the UE patches before this, we get to spawn WindowServer, and crash
because of FLD_RM32 (nothing tested past that) in graphical mode.
But we get a working shell in text mode :^) (and DHCPClient fails when
setting whatever settings it has received)
This fixes an issue where making a TCP connection to localhost didn't
work correctly since the loopback interface is currently synchronous.
(Sending something to localhost would enqueue a packet on the same
interface and then immediately wake the network task to process that
packet.)
This was preventing the TCP handshake from working correctly with
localhost since we'd send out the SYN packet before moving to the
SynSent state. The lock is now held long enough for this operation
to be atomic.
Problem:
- `constexpr` functions are decorated with the `inline` specifier
keyword. This is redundant because `constexpr` functions are
implicitly `inline`.
- [dcl.constexpr], §7.1.5/2 in the C++11 standard): "constexpr
functions and constexpr constructors are implicitly inline (7.1.2)".
Solution:
- Remove the redundant `inline` keyword.
Notice that we ensured that the size is a multiple of the page size and
that there is at least one page there, otherwise, this change would be
invalid.
We create an empty region and then expand it:
// First iteration.
m_user_physical_regions.append(PhysicalRegion::create(addr, addr));
// Following iterations.
region->expand(region->lower(), addr);
So if the memory region only has one page, we would end up with an empty
region. Thus we need to do one more iteration.
If something goes wrong when trying to write out a perfcore file during
process finalization, there's nowhere to report an error to, other than
the debug log. So write it to the debug log.
Problem: Defining the destructor violates the "rule of 0" and prevents
the copy/move constructor/assignment operators from being provided by
the compiler.
Solution: Change the constructor and destructor to be the default
compiler-provided definition.
In case we want to rely more on TSC in time keeping in the future, idk
This adds:
- RDTSCP, for when the RDTSCP instruction is available
- CONSTANT_TSC, for when the TSC has a constant frequency, invariant
under things like the CPU boosting its frequency.
- NONSTOP_TSC, for when the TSC doesn't pause when the CPU enters
sleep states.
AMD cpus and newer intel cpus set the INVSTC bit (bit 8 in edx of
extended cpuid 0x8000000008), which implies both CONSTANT_TSC and
NONSTOP_TSC. Some older intel processors have CONSTANT_TSC but not
NONSTOP_TSC; this is set based on cpu model checks.
There isn't a ton of documentation on this, so this follows Linux
terminology and http://blog.tinola.com/?e=54
CONSTANT_TSC:
39b3a79105
NONSTOP_TSC:
40fb17152c
qemu disables invtsc (bit 8 in edx of extended cpuid 0x8000000008)
by default even if the host cpu supports it. It can be enabled by
running with `SERENITY_QEMU_CPU=host,migratable=off` set.
The block group indices are 1-based for some reason. Because of that,
we were forgetting to check in the very last block group when doing
block allocation. This caused block allocation to fail even when the
superblock indicated that we had free blocks.
Fixes#3674.
When obeying FD_CLOEXEC, we don't need to explicitly call close() on
all the FileDescriptions. We can just clear them out from the process
fd table. ~FileDescription() will call close() anyway.
This fixes an issue where TelnetServer would shut down accepted sockets
when exec'ing a shell for them. Since the parent process still has the
socket open, we should not force-close it. Just let go.
This finally takes care of the kind-of excessive boilerplate code that were the
ctype adapters. On the other hand, I had to link `LibC/ctype.cpp` to the Kernel
(for `AK/JsonParser.cpp` and `AK/Format.cpp`). The previous commit actually makes
sense now: the `string.h` includes in `ctype.{h,cpp}` would require to link more LibC
stuff to the Kernel when it only needs the `_ctype_` array of `ctype.cpp`, and there
wasn't any string stuff used in ctype.
Instead of all this I could have put static derivatives of `is_any_of()` in the
concerned AK files, however that would have meant more boilerplate and workarounds;
so I went for the Kernel approach.
Similar to Process, we need to make Thread refcounted. This will solve
problems that will appear once we schedule threads on more than one
processor. This allows us to hold onto threads without necessarily
holding the scheduler lock for the entire duration.