This patch begins the work of sharing types and macros between Kernel
and LibC instead of duplicating them via the kludge in UnixTypes.h.
The basic idea is that the Kernel vends various POSIX headers via
Kernel/API/POSIX/ and LibC simply #include's them to get the macros.
This is a bug that went unnoticed for a long time, so the exposed values
in SysFS PCI device directories were incorrect because the assigned PCI
address was simply the host bridge always.
Also, the bus typing should really be two hexadecimal digits and not 4
digits.
This patch removes KResult::operator int() and deals with the fallout.
This forces a lot of code to be more explicit in its handling of errors,
greatly improving readability.
The C++ standard specifies that `free` and `operator delete` should
be callable with nullptr. The non-aligned `kfree` already handles this,
but because of the pointer arithmetic to obtain the allocation start
pointer, the aligned version would produce undefined behavior.
In e7fb70b05, regular kmalloc was changed to return nullptr on
allocation failure instead of crashing. The `kmalloc_aligned_cxx`
wrapper used by the aligned operator new should do the same.
Enable the LOCK_DEBUG functionality for these new APIs, as it looks
like we want to move the whole system to use this in the not so distant
future. :^)
The LOCK_DEBUG conditional code is pretty ugly for a feature that we
only use rarely. We can remove a significant amount of this code by
utilizing a zero sized fake type when not building in LOCK_DEBUG mode.
This lets us keep the same API, but just let the compiler optimize it
away when don't actually care about the location the caller came from.
Calling error() on KResult is a mistake I made in 7ba991dc37, so
instead of doing that, which triggers an assertion if an error occured,
in Inode::read_entire method with VERIFY(nread <= sizeof(buffer)), we
really should just return the KResult and not to call error() on it.
When TCP sockets successfully establish a connection, any SO_ERROR
should be cleared back to success. For example, SO_ERROR gets set to
EINPROGRESS on asynchronous connect calls and should be cleared when
the socket moves to the Established state.
This allows for commands like netstat to reference /proc/net and
identify a connection's owning process. Process information is limited
to superusers and user owned processes.
Now that we have a significant amount of code paths handling OOM, lets
enable kmalloc and friends to actually return nullptr. This way we can
start stressing these paths and validating all of they work as expected.
The implementation uses try_copy_kstring_from_user to allocate a kernel
string using, but does not use the length of the resulting string.
The size parameter to the syscall is untrusted, as try copy kstring will
attempt to perform a `safe_strlen(..)` on the user mode string and use
that value for the allocated length of the KString instead. The bug is
that we are printing the kstring, but with the usermode size argument.
During fuzzing this resulted in us walking off the end of the allocated
KString buffer printing garbage (or any kernel data!), until we stumbled
in to the KSym region and hit a fatal page fault.
This is technically a kernel information disclosure, but (un)fortunately
the disclosure only happens to the Bochs debug port, and or the serial
port if serial debugging is enabled. As far as I can tell it's not
actually possible for an untrusted attacker to use this to do something
nefarious, as they would need access to the host. If they have host
access then they can already do much worse things :^).
The only two paths for copying strings in the kernel should be going
through the existing Userspace<char const*>, or StringArgument methods.
Lets enforce this by removing the option for using the raw cstring APIs
that were previously available.
Since the InodeIndex encapsulates a 64 bit value, it is correct to
ensure that the Kernel is exposing the entire value and the LibC is
aware of it.
This commit requires an entire re-compile because it's essentially a
change in the Kernel ABI, together with a corresponding change in LibC.
The compiler can re-order the structure (class) members if that's
necessary, so if we make Process to inherit from ProcFSExposedComponent,
even if the declaration is to inherit first from ProcessBase, then from
ProcFSExposedComponent and last from Weakable<Process>, the members of
class ProcFSExposedComponent (including the Ref-counted parts) are the
first members of the Process class.
This problem made it impossible to safely use the current toggling
method with the write-protection bit on the ProcessBase members, so
instead of inheriting from it, we make its members the last ones in the
Process class so we can safely locate and modify the corresponding page
write protection bit of these values.
We make sure that the Process class doesn't expand beyond 8192 bytes and
the protected values are always aligned on a page boundary.