This should probably call out to a login program at some point. Right now
it just puts a root terminal on tty{1,2,3}.
Remember not to leave your Serenity workstation unattended!
Our logic for using the ATA_CMD_CACHE_FLUSH functionality was a bit wrong,
and now it's better.
The ATA spec says these two things:
> The device shall enter the interrupt pending state when:
> 1) any command except a PIO data-in command reaches command completion
> successfully;
> ...
> The device shall exit the interrupt pending state when:
> 1) the device is selected, BSY is cleared to zero, and the Status
> register is read;
This means that our sequence of actions was probably never going to work.
We were waiting in a loop checking the status register until it left the
busy state, _then_ waiting for an interrupt. Unfortunately by checking the
status register, we were _clearing_ the interrupt we were about to wait
for.
Now we just wait for the interrupt - we don't poll the status register at
all. This also means that once we get our `wait_for_irq` method sorted out
we'll spend a bunch less CPU time waiting for things to complete.
* The origin PID is the PID of the process that created this socket,
either explicitly by calling socket(), or implicitly by accepting
a TCP connection. Note that accepting a local socket connection
does not create a new socket, it reuses the one connect() was
called on, so for accepted local sockets the origin PID points
to the connecting process.
* The acceptor PID is the PID of the process that accept()ed this
socket. For accepted TCP sockets, this is the same as origin PID.
This is more logical and allows us to solve the problem of
non-blocking TCP sockets getting stuck in SocketRole::None.
The only complication is that a single LocalSocket may be shared
between two file descriptions (on the connect and accept sides),
and should have two different roles depending from which side
you look at it. To deal with it, Socket::role() is made a
virtual method that accepts a file description, and LocalSocket
internally tracks which FileDescription is the which one and
returns a correct role.
Now that there can't be multiple clones of the same fd,
we only need to track whether or not an fd exists on each
side. Also there's no point in tracking connecting fds.
After a fork, the parent and the child are supposed to share
the same file description. For example, modifying the current
offset of a file description is visible in both of them.
Apparently we need to poll the drive for its status after each sector we
read if we're not doing DMA. Previously we only did it at the start,
which resulted in every sector after the first in a batch having 12 bytes
of garbage on the end. This manifested as silent read corruption.
serial_debug will output all the kprintf and dbgprintf data to COM1 at
8-N-1 57600 baud. this is particularly useful for debugging the boot
process on live hardware.
Note: it must be the first parameter in the boot cmdline.
Since this key number doesn't appear to collide with anything on the
US keymap, I was thinking we could get away with supporting a hybrid
US/UK keymap. :^)
Once we've converted from an Ethernet frame to an IPv4 packet, we can
pass the IPv4Packet around instead of the EthernetFrameHeader.
Also add some more code to ignore invalid-looking packets.