Before this change, we would sometimes map a region into the address
space with !is_shared(), and then moments later call set_shared(true).
I found this very confusing while debugging, so this patch makes us pass
the initial shared flag to the Region constructor, ensuring that it's in
the correct state by the time we first map the region.
There are plenty of places in the kernel that aren't
checking if they actually got their allocation.
This fixes some of them, but definitely not all.
Fixes#3390Fixes#3391
Also, let's make find_one_free_page() return nullptr
if it doesn't get a free index. This stops the kernel
crashing when out of memory and allows memory purging
to take place again.
Fixes#3487
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226
Use copy_{to,from}_user() in the various File::ioctl() implementations
instead of disabling SMAP wholesale in sys$ioctl().
This patch does not port IPv4Socket::ioctl() to those API's since that
will be more involved. That function now creates a local SmapDisabler.
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
Also, duplicate data in dbg() and klog() calls were removed.
In addition, leakage of virtual address to kernel log is prevented.
This is done by replacing kprintf() calls to dbg() calls with the
leaked data instead.
Also, other kprintf() calls were replaced with klog().
You can now mmap a file as private and writable, and the changes you
make will only be visible to you.
This works because internally a MAP_PRIVATE region is backed by a
unique PrivateInodeVMObject instead of using the globally shared
SharedInodeVMObject like we always did before. :^)
Fixes#1045.
Now we check before we set a FBResolution if the BXVGA device is capable
of setting the requested resolution.
If not, we revert the resolution to the previous one and return an error
to userspace.
Fixes#451.
There's no sense in allowing arbitrarily huge resolutions. Instead, we
now cap the screen size at 4K DCI resolution and will reject attempts
to go bigger with EINVAL.
Previously it was not possible for this function to fail. You could
exploit this by triggering the creation of a VMObject whose physical
memory range would wrap around the 32-bit limit.
It was quite easy to map kernel memory into userspace and read/write
whatever you wanted in it.
Test: Kernel/bxvga-mmap-kernel-into-userspace.cpp
When using dbg() in the kernel, the output is automatically prefixed
with [Process(PID:TID)]. This makes it a lot easier to understand which
thread is generating the output.
This patch also cleans up some common logging messages and removes the
now-unnecessary "dbg() << *current << ..." pattern.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
The new PCI subsystem is initialized during runtime.
PCI::Initializer is supposed to be called during early boot, to
perform a few tests, and initialize the proper configuration space
access mechanism. Kernel boot parameters can be specified by a user to
determine what tests will occur, to aid debugging on problematic
machines.
After that, PCI::Initializer should be dismissed.
PCI::IOAccess is a class that is derived from PCI::Access
class and implements PCI configuration space access mechanism via x86
IO ports.
PCI::MMIOAccess is a class that is derived from PCI::Access
and implements PCI configurtaion space access mechanism via memory
access.
The new PCI subsystem also supports determination of IO/MMIO space
needed by a device by checking a given BAR.
In addition, Every device or component that use the PCI subsystem has
changed to match the last changes.
Now that the SystemMonitor queries which open files can be read and written to,
having can_read()/can_write() unconditionally call ASSERT_NOT_REACHED() leads
to system crashes when inspecting the WindowServer.
Instead, just return true from can_read()/can_write() (indicating that the
read()/write() syscalls should not block) and return -EINVAL when trying to
actually read from or write to these devices.
InodeVMObject is a VMObject with an underlying Inode in the filesystem.
AnonymousVMObject has no Inode.
I'm happy that InodeVMObject::inode() can now return Inode& instead of
VMObject::inode() return Inode*. :^)
BXVGADevice was using a Size object for its framebuffer size. We shouldn't
be pulling in userspace code in the kernel like this, even if it's just
headers. :^)
After reading a bunch of POSIX specs, I've learned that a file descriptor
is the number that refers to a file description, not the description itself.
So this patch renames FileDescriptor to FileDescription, and Process now has
FileDescription* file_description(int fd).