Following in the footsteps of <input type=checkbox>, this patch adds
LayoutButton which implements a basic push button using LibGfx styling
primitives.
This is implemented entirely inside LibWeb, there is no GUI::CheckBox
widget instantiated, unlike other input types. All input types should
be moved to this new style of implementation.
To implement form controls internally in LibWeb (necessary for multi
process forms), we'll need the ability to handle events since we can't
rely on LibGUI widgets anymore.
A LayoutNode can now override wants_mouse_events() and if it returns
true, it will now receive mousedown, mousemove and mouseup events. :^)
Instead of computing it on the fly while painting each layout node,
they now remember their selection state. This avoids a whole bunch
of tree traversal while painting with anything selected.
You can now cycle through focusable elements (currently only hyperlinks
are focusable) with the Tab key.
The focus outline is rendered in a new FocusOutline paint phase.
The text cursor follows slightly different "intuitive" rules than the
regular hit testing. Clicking past the right edge of a text box should
still "hit" the text box, and place the cursor at its end, for example.
We solve this by adding a HitTestType enum that is passed to hit_test()
and determines whether past-the-edge candidates are considered.
Const pointers into the DOM was a nice idea, but in practice, there are
too many situations where the layout tree wants to some non-const thing
to the DOM.
LibWeb keeps growing and the Web namespace is filling up fast.
Let's put DOM stuff into Web::DOM, just like we already started doing
with SVG stuff in Web::SVG.
To make this possible, I also had to give each LayoutNode a Document&
so it can resolve document-specific colors correctly. There's probably
ways to avoid having this extra member by resolving colors later, but
this works for now.
StyleProperties is really only the specified "input" to what eventually
becomes the used/computed style we use for layout and painting.
Unlike StyleProperties, LayoutStyle will have strongly typed values for
everything it contains (i.e no CSS::ValueID or strings, etc.)
This first patch moves z-index into LayoutStyle.
This avoids having to query the StyleProperties hash map whenever we
need to know if an element is absolutely positioned. This was extremely
hot in interactive window resize profiles.
"Paint" matches what we call this in the rest of the system. Let's not
confuse things by mixing paint/render/draw all the time. I'm guilty of
this in more places..
Also rename RenderingContext => PaintContext.
CSS defines a very specific paint order. This patch starts steering us
towards respecting that by introducing the PaintPhase enum with values:
- Background
- Border
- Foreground
- Overlay (internal overlays used by inspector)
Basically, to get the right visual result, we have to render the page
multiple times, going one phase at a time.
Fixed position elements have the ICB as their containing block.
The magic of fixed positioning is implemented at the rendering stage,
where we temporarily translate painting by the current scroll offset.
Note that "absolutely positioned" includes both position:absolute
and position:fixed.
This patch introduces support for more than just "absolute px" units in
our Length class. It now also supports "em" and "rem", which are units
relative to the font-size of the current layout node and the <html>
element's layout node respectively.
This patch introduces a bunch of things:
- Subframes (Web::Frame::create_subframe())
- HTMLIFrameElement (loads and owns the hosted Web::Frame)
- LayoutFrame (layout and rendering of the hosted frame)
There's still a huge number of things missing, like scrolling, overflow
handling, event handling, scripting, etc. But we can make a little
iframe in a document and it actually renders another document there.
I think that's pretty cool! :^)
We now implement the somewhat fuzzy shrink-to-fit algorithm when laying
out inline-block elements with both block and inline children.
Shrink-to-fit works by doing two speculative layouts of the entire
subtree inside the current block, to compute two things:
1. Preferred minimum width: If we made a line break at every chance we
had, how wide would the widest line be?
2. Preferred width: We break only when explicitly told to (e.g "<br>")
How wide would the widest line be?
We then shrink the width of the inline-block element to an appropriate
value based on the above, taking the available width in the containing
block into consideration (sans all the box model fluff.)
To make the speculative layouts possible, plumb a LayoutMode enum
throughout the layout system since it needs to be respected in various
places.
Note that this is quite hackish and I'm sure there are smarter ways to
do a lot of this. But it does kinda work! :^)
This display type is implemented using a LayoutBlock that is_inline().
Basically it behaves like a block internally, and its children are laid
out in the normal block layout fashion. Externally however, it behaves
like an atomic inline-level box.
Layout of inline-block boxes happens in three stages:
1. The outer dimensions of the block are computed during the recursive
normal layout pass. We skip positioning, but lay out children.
2. Later on, during line layout in the *containing block*, the inline
block now contributes a linebox fragment. When linebox fragments are
positioned, we learn the final position of the inline block. That's
when we set the inline block's position.
3. We re-layout the inline block's children once again. This is done to
make sure they end up in the right position. The layout tree doesn't
use relative offsets, so after we position the inline block in (2),
its children will not have its positions updated. Relayout moves
all children of inline blocks to the right place.
This is a rather naive approach but it does get the basic behavior into
place so we can iterate on it. :^)
Scripts loaded in this way will block the parser until they finish
executing. This means that they see the DOM before the whole document
has been fully parsed. This is all normal, of course.
To make this work, I changed the way we notify DOM nodes about tree
insertion. The inserted_into() callbacks are now incrementally invoked
during parse, as each node is appended to its parent.
To accomodate inline scripts and inline style sheets, we now also have
a children_changed() callback which is invoked on any parent when it
has children added/removed.
This patch adds HTMLCanvasElement along with a LayoutCanvas object.
The DOM and layout parts are very similar to <img> elements.
The <canvas> element holds a Gfx::Bitmap which is sized according to
the "width" and "height" attributes on the element.
Calling .getContext("2d") on a <canvas> element gives you a context
object that draws into the underlying Gfx::Bitmap of the <canvas>.
The context weakly points to the <canvas> which allows it to outlive
the canvas element if needed.
This is really quite cool. :^)