We create a base class called GenericFramebufferDevice, which defines
all the virtual functions that must be implemented by a
FramebufferDevice. Then, we make the VirtIO FramebufferDevice and other
FramebufferDevice implementations inherit from it.
The most important consequence of rearranging the classes is that we now
have one IOCTL method, so all drivers should be committed to not
override the IOCTL method or make their own IOCTLs of FramebufferDevice.
All graphical IOCTLs are known to all FramebufferDevices, and it's up to
the specific implementation whether to support them or discard them (so
we require extensive usage of KResult and KResultOr, together with
virtual characteristic functions).
As a result, the interface is much cleaner and understandable to read.
Previously, we assumed that the `.text` segment was loaded at vaddr 0 in
shared object, which is not the case with `-z separate-code` enabled.
Because we didn't do the right calculations to translate an address from
a performance event into its value within the ELF file, Profiler would
try to disassemble out-of-bounds memory locations, leading to a crash.
This commit also changes `LibraryMetadata` to apply to a loaded library
as a whole, not just to one of its segments (like .text or .data). This
lets us simplify the interface, as we no longer have to worry about
`text_base`.
Fixes#10628
Since our executables are position-independent, the address values
extraced from processes don't correspond to their values within the ELF
file. We have to offset the absolute addresses by the load base address
to get the relative symbol that we need for disassembly.
Now that the kernel is compiled as a PIE, all addresses are relative to
the loaded base address, so Symbolication::kernel_base has to be
subtracted off from the absolute addresses if we want to symbolicate
them.
Previously we assumed there were less kernel samples than user samples,
by implicitly using the kernel histogram size for indicies to the user
histogram. Such a profile can be reproduced by profiling a very short
lived program like true: `profile -c true`
Beforehand we were dividing the frame width by the profile length in ms
and then dividing the frame width by the result once more, which is
equivalent to (but slower) just using the length in ms directly, aside
from the case in which the profile is less than 1 ms long, in which
case this would trigger undefined behaviour due to the division by zero
This issue was also present in the kernel, the description of which is
provided in an identically titled commit.
Note that this couldn't have affected any programs running in
UserspaceEmulator as we don't support SSE instructions, and don't seem
to raise faults under any conditions.
We only froward String setting and FlagPost creation for now, due to the
other performance events being nonsensical to forward.
We also record these signposts in the optionally generated profile.
Instead of doing layout synchronously whenever something changes,
we now use a basic event loop timer to defer and coalesce relayouts.
If you did something that requires a relayout of the page, make sure
to call Document::set_needs_layout() and it will get coalesced with all
the other layout updates.
There's lots of room for improvement here, but this already makes many
web pages significantly snappier. :^)
Also, note that this exposes a number of layout bugs where we have been
relying on multiple relayouts to calculate the correct dimensions for
things. Now that we only do a single layout in many cases, these kind of
problems are much more noticeable. That should also make them easier to
figure out and fix. :^)
This is a helpful option to prevent unwanted side effects, distinguish
between user and programmatic input, etc. Sliders and SpinBoxes were
implementing it idiosyncratically, so let's generalize the API and
give Buttons and TextEditors the same ability.
We previously stored the Window object in a global RefPtr (for no
apparent reason).
This led to a use-after-free bug in the Window's destructor when
HackStudio was exited via the Quit action (Exiting by closing the
window did not trigger this bug).
If you saved a file under a different name and then went back to
the first file, then you had the same TextDocument buffer, and therefore
the same changes to the file as in the new one.
This removes the awkward String::replace API which was the only String
API which mutated the String and replaces it with a new immutable
version that returns a new String with the replacements applied. This
also fixes a couple of UAFs that were caused by the use of this API.
As an optimization an equivalent StringView::replace API was also added
to remove an unnecessary String allocations in the format of:
`String { view }.replace(...);`
Previously, the modification tag in the editor file label was unset only
after a file was saved.
This commit will also unset the tag if you undo the stack (for example
by hitting Ctrl+Z) to the last saved state.
And also try_create<T> => try_make_ref_counted<T>.
A global "create" was a bit much. The new name matches make<T> better,
which we've used for making single-owner objects since forever.
Core::deferred_invoke is a way of executing an action after previously
queued events have been processed. It removes the requirement of
having/being a Core::Object subclass in order to defer invocation
through Core::Object::deferred_invoke.
Core::Object::deferred_invoke now delegates to Core::deferred_invoke.
The version with the Object& argument is still present but will be
removed in the following commits.
This commit additionally fixes a new places where the
DeferredInvocationEvent was dispatched to the event loop directly, and
replaces them with the Core::deferred_invoke equivalent.
The kernel profiles were recently changed to have a `strings` array
as part of the profile objects. The `ProfileViewer` now checks for
that during startup and declares the profile invalid if the array
is not present.
The UserspaceEmulator doesn't use the API which the kernel exposed
the string array for, so just fake it by always adding an empty array
to the generated profiles.
The fact that profiles are json on one giant line makes them very
difficult to debug when things go wrong. Instead make sure to wrap
each event or sample on a newline so you can easily grep/heap/tail
the profile files.
This allows us to remove all the add_subdirectory calls from the top
level CMakeLists.txt that referred to targets linking LagomCore.
Segregating the host tools and Serenity targets helps us get to a place
where the main Serenity build can simply use a CMake toolchain file
rather than swapping all the compiler/sysroot variables after building
host libraries and tools.