The old implementation of PassMode has only been tested with a single
image, and let's say that it didn't survive long in the wild. A few
cases were not considered:
- We only supported VerticalMode right after PassMode.
- It can happen that token need to be used but not consumed from the
reference line.
With that fix, we are able to decode every single PDF file from the
1000-file zip "0000" (except 0000871.pdf, which uses byte alignment).
This is massive progress compared to the hundred of errors that we were
previously receiving.
This reverts commit a4b2e5b27b.
This was just plain wrong, I remember it making sense and fixing
something but that was probably due to local changes. It should never
have landed on master, my bad.
The first marker is always white in CCITT streams, so lines starting
with a black pixel encodes a symbol meaning 0 white pixels. Then, the
decoding would proceed with a black symbol. We used to set the symbol's
color based on `column == 0`, which is wrong in this situation.
Type 2 <=> One-dimensional Group3, customized for TIFF
Type 3 <=> Two-dimensional Group3, uses the original 1D internally
Type 4 <=> Two-dimensional Group4
So let's clarify that this is not Group3 1D but the TIFF variant, which
is called `CCITTRLE` in libtiff. So let's stick with this name to avoid
confusion.
This compression (tag Compression=2) is not very popular on its own, but
a base to implement CCITT3 2D and CCITT4 compressions.
As the format has no real benefits, it is quite hard to find an app that
accepts tho encode that for you. So I used the following program that
calls `libtiff` directly:
```cpp
#include <vector>
#include <cstdlib>
#include <iostream>
#include <tiffio.h>
// An array containing 0 and 1 of length width * height.
extern std::vector<uint8_t> array;
int main() {
// From: https://stackoverflow.com/a/34257789
TIFF *image = TIFFOpen("input.tif", "w");
int const width = 400;
int const height = 300;
TIFFSetField(image, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField(image, TIFFTAG_IMAGELENGTH, height);
TIFFSetField(image, TIFFTAG_PHOTOMETRIC, 0);
TIFFSetField(image, TIFFTAG_COMPRESSION, COMPRESSION_CCITTRLE);
TIFFSetField(image, TIFFTAG_BITSPERSAMPLE, 1);
TIFFSetField(image, TIFFTAG_SAMPLESPERPIXEL, 1);
TIFFSetField(image, TIFFTAG_ROWSPERSTRIP, 1);
std::vector<uint8_t> scan_line(width / 8 + 8, 0);
int count = 0;
for (int i = 0; i < height; i++) {
std::fill(scan_line.begin(), scan_line.end(), 0);
for (int x = 0; x < width; ++x) {
uint8_t eight_pixels = scan_line.at(x / 8);
eight_pixels = eight_pixels << 1;
eight_pixels |= !array.at(i * width + x);
scan_line.at(x / 8) = eight_pixels;
}
int bytes = int(width / 8.0 + 0.5);
if (TIFFWriteScanline(image, scan_line.data(), i, bytes) != 1)
std::cerr << "Something went wrong\n";
}
TIFFClose(image);
}
```