This is a special kind of byte array that clamps its values to 0...255
It will be used for HTML ImageData objects.
I made Object::put_by_index() and get_by_index() virtual for this.
We'll probably need to make non-numeric property name lookups virtual
as well, but this solves my current problem well enough.
A MarkedValueList is basically a Vector<JS::Value> that registers with
the Heap and makes sure that the stored values don't get GC'd.
Before this change, we were unsafely keeping Vector<JS::Value> in some
places, which is out-of-reach for the live reference finding logic
since Vector puts its elements on the heap by default.
We now pass all the JavaScript tests even when running with "js -g",
which does a GC on every heap allocation.
This patch replaces the old variable lookup logic with a new one based
on lexical environments.
This brings us closer to the way JavaScript is actually specced, and
also gives us some basic support for closures.
The interpreter's call stack frames now have a pointer to the lexical
environment for that frame. Each lexical environment can have a chain
of parent environments.
Before calling a Function, we first ask it to create_environment().
This gives us a new LexicalEnvironment for that function, which has the
function's lexical parent's environment as its parent. This allows
inner functions to access variables in their outer function:
function foo() { <-- LexicalEnvironment A
var x = 1;
function() { <-- LexicalEnvironment B (parent: A)
console.log(x);
}
}
If we return the result of a function expression from a function, that
new function object will keep a reference to its parent environment,
which is how we get closures. :^)
I'm pretty sure I didn't get everything right here, but it's a pretty
good start. This is quite a bit slower than before, but also correcter!
This patch adds JS::Shape, which implements a transition tree for our
Object class. Object property keys, prototypes and attributes are now
stored in a Shape, and each Object has a Shape.
When adding a property to an Object, we make a transition from the old
Shape to a new Shape. If we've made the same exact transition in the
past (with another Object), we reuse the same transition and both
objects may now share a Shape.
This will become the foundation of inline caching and other engine
optimizations in the future. :^)
This adds:
- A global Date object (with `length` property and `now` function)
- The Date constructor (no arguments yet)
- The Date prototype (with `get*` functions)
You can now throw an expression to the nearest catcher! :^)
To support throwing arbitrary values, I added an Exception class that
sits as a wrapper around whatever is thrown. In the future it will be
a logical place to store a call stack.
You can now throw exceptions by calling Interpreter::throw_exception().
Anyone who calls ASTNode::execute() needs to check afterwards if the
Interpreter now has an exception(), and if so, stop what they're doing
and simply return.
When catching an exception, we'll first execute the CatchClause node
if present. After that, we'll execute the finalizer block if present.
This is unlikely to be completely correct, but it's a start! :^)
This function is ultimately supposed to be generic and allow any |this|
that has a length property, but for now it only works on our own Array
object type.
This is pretty heavy and unoptimized, but it will do the trick for now.
Basically, Heap now has a HashTable<HandleImpl*> and you can call
JS::make_handle(T*) to construct a Handle<T> that guarantees that the
pointee will always survive GC until the Handle<T> is destroyed.
This patch adds NativeProperty, which can be used to implement object
properties that have C++ getters and/or setters.
Use this to move String.prototype.length to its correct place. :^)
This patch adds String.prototype.charAt() to demonstrate that prototype
property lookup works, and that you can call a prototype function on an
object, and it will do what you expect. :^)
Both types of functions are now Function and implement calling via:
virtual Value call(Interpreter&, Vector<Value> arguments);
This removes the need for CallExpression::execute() to care about which
kind of function it's calling. :^)
This can be used to implement arbitrary functionality, callable from
JavaScript.
To make this work, I had to change the way CallExpression passes
arguments to the callee. Instead of a HashMap<String, Value>, we now
pass an ordered list of Argument { String name; Value value; }.
This patch includes a native "print(argument)" function. :^)
This adds a basic Javascript lexer and parser. It can parse the
currently existing demo programs. More work needs to be done to
turn it into a complete parser than can parse arbitrary JS Code.
The lexer outputs tokens with preceeding whitespace and comments
in the trivia member. This should allow us to generate the exact
source code by concatenating the generated tokens.
The parser is written in a way that it always returns a complete
syntax tree. Error conditions are represented as nodes in the
tree. This simplifies the code and allows it to be used as an
early stage parser, e.g for parsing JS documents in an IDE while
editing the source code.:
Objects can now be allocated via the interpreter's heap. Objects that
are allocated in this way will need to be provably reachable from at
least one of the known object graph roots.
The roots are currently determined by Heap::collect_roots().
Anything that wants be collectable garbage should inherit from Cell,
the fundamental atom of the GC heap.
This is pretty neat! :^)
I always tell people to start building things by working on the thing
that seems the most interesting right now. The most interesting thing
here was an AST + simple interpreter, so that's where we start!
There is no lexer or parser yet, we build an AST directly and then
execute it in the interpreter, producing a return value.
This seems like the start of something interesting. :^)