This is useful for reading and writing doubles for #3329.
It is also useful for emulating 64-bit binaries.
MemoryOrRegisterReference assumes that 64-bit values are always
memory references since that's enough for fpu support. If we
ever want to emulate 64-bit binaries, that part will need minor
updating.
This patch introduces the concept of shadow bits. For every byte of
memory there is a corresponding shadow byte that contains metadata
about that memory.
Initially, the only metadata is whether the byte has been initialized
or not. That's represented by the least significant shadow bit.
Shadow bits travel together with regular values throughout the entire
CPU and MMU emulation. There are two main helper classes to facilitate
this: ValueWithShadow and ValueAndShadowReference.
ValueWithShadow<T> is basically a struct { T value; T shadow; } whereas
ValueAndShadowReference<T> is struct { T& value; T& shadow; }.
The latter is used as a wrapper around general-purpose registers, since
they can't use the plain ValueWithShadow memory as we need to be able
to address individual 8-bit and 16-bit subregisters (EAX, AX, AL, AH.)
Whenever a computation is made using uninitialized inputs, the result
is tainted and becomes uninitialized as well. This allows us to track
this state as it propagates throughout memory and registers.
This patch doesn't yet keep track of tainted flags, that will be an
important upcoming improvement to this.
I'm sure I've messed up some things here and there, but it seems to
basically work, so we have a place to start! :^)
The SoftMMU now receives full X86::LogicalAddress values from SoftCPU.
This allows the MMU to reroute TLS accesses to a special memory region.
The ELF executable's PT_TLS header tells us how to allocate the TLS.
Basically, the GS register points to a magical 4-byte area which has
a pointer to the TCB (thread control block). The TCB lives in normal
flat memory space and is accessed through the DS register.
This Emulator sub-object will keep track of all active memory regions
and handle memory read/write operations from the CPU.
A memory region is currently represented by a virtual Region object
that can implement arbitrary behavior by overriding read/write ops.