This is a freelist allocator with static size classes that works as a
complement to the generic kmalloc(). It's a lot faster than kmalloc()
since allocation just means popping from the freelist.
It's also significantly more compact when there are a lot of objects
smaller than the minimum kmalloc chunk size (32 bytes.)
This patch enables it for the Region and PhysicalPage classes.
In the PhysicalPage (8 bytes) case, it's a huge improvement since we
no longer waste 75% of the storage allocated.
There are also a number of ways this can be improved, so let's keep
working on it going forward.
Also added some assertions to DirectoryEntry in case someone tries to
instantiate them with names that would overflow the name buffer.
DirectoryEntry is a crappy data structure, and the name buffer is also
crappy. Added a FIXME about replacing it with something nicer.
Before this patch, the DirectoryEntry::name buffer would overflow if
you did "touch extremely-long-file-name". Duh.
Fixes#538.
This was a workaround to be able to build on case-insensitive file
systems where it might get confused about <string.h> vs <String.h>.
Let's just not support building that way, so String.h can have an
objectively nicer name. :^)
- TmpFSInode::write_bytes() needs to allow non-zero offsets
- TmpFSInode::read_bytes() wasn't respecting the offset
GCC puts the temporary files generated during compilation in /tmp,
so this exposed some bugs in TmpFS.
The complication is around /proc/sys/ variables, which were attached
to inodes. Now they're their own thing, and the corresponding inodes
are lazily created (as all other ProcFS inodes are) and simply refer
to them by index.
It is now possible to unmount file systems from the VFS via `umount`.
It works via looking up the `fsid` of the filesystem from the `Inode`'s
metatdata so I'm not sure how fragile it is. It seems to work for now
though as something to get us going.
This is more logical and allows us to solve the problem of
non-blocking TCP sockets getting stuck in SocketRole::None.
The only complication is that a single LocalSocket may be shared
between two file descriptions (on the connect and accept sides),
and should have two different roles depending from which side
you look at it. To deal with it, Socket::role() is made a
virtual method that accepts a file description, and LocalSocket
internally tracks which FileDescription is the which one and
returns a correct role.
Now that there can't be multiple clones of the same fd,
we only need to track whether or not an fd exists on each
side. Also there's no point in tracking connecting fds.
After a fork, the parent and the child are supposed to share
the same file description. For example, modifying the current
offset of a file description is visible in both of them.
Using a HashTable to track "all instances of Foo" is only useful if we
actually need to look up entries by some kind of index. And since they
are HashTable (not HashMap), the pointer *is* the index.
Since we have the pointer, we can just use it directly. Duh.
This increase sizeof(VMObject) by two pointers, but removes a global
table that had an entry for every VMObject, where the cost was higher.
It also avoids all the general hash tabling business when creating or
destroying VMObjects. Generally we should do more of this. :^)
This is comprised of five small changes:
* Keep a counter for tx/rx packets/bytes per TCP socket
* Keep a counter for tx/rx packets/bytes per network adapter
* Expose that data in /proc/net_tcp and /proc/netadapters
* Convert /proc/netadapters to JSON
* Fix up ifconfig to read the JSON from netadapters
This is not perfect as it uses a lot of VM, but since the buffers are
supposed to be temporary it's not super terrible.
This could be improved by giving back the unused VM to the kernel's
RangeAllocator after finishing the buffer building.
This makes VMObject 8 bytes smaller since we can use the array size as
the page count.
The size() is now also computed from the page count instead of being
a separate value. This makes sizes always be a multiple of PAGE_SIZE,
which is sane.
InodeVMObject is a VMObject with an underlying Inode in the filesystem.
AnonymousVMObject has no Inode.
I'm happy that InodeVMObject::inode() can now return Inode& instead of
VMObject::inode() return Inode*. :^)
The VMObject name was always either the owning region's name, or the
absolute path of the underlying inode.
We can reconstitute this information if wanted, no need to keep copies
of these strings around.
This has several significant changes to the networking stack.
* Significant refactoring of the TCP state machine. Right now it's
probably more fragile than it used to be, but handles quite a lot
more of the handshake process.
* `TCPSocket` holds a `NetworkAdapter*`, assigned during `connect()` or
`bind()`, whichever comes first.
* `listen()` is now virtual in `Socket` and intended to be implemented
in its child classes
* `listen()` no longer works without `bind()` - this is a bit of a
regression, but listening sockets didn't work at all before, so it's
not possible to observe the regression.
* A file is exposed at `/proc/net_tcp`, which is a JSON document listing
the current TCP sockets with a bit of metadata.
* There's an `ETHERNET_VERY_DEBUG` flag for dumping packet's content out
to `kprintf`. It is, indeed, _very debug_.