I was originally implementing signals by looking at some man page about
sigaction() to see how it works. It seems like the restorer thingy is
system-specific and not required by POSIX, so let's get rid of it.
You can now open as many PTY pairs as you like. Well, it's actually capped
at 8 for now, but it's just a constant and trivial to change.
Unregistering a PTY pair is untested because I didn't want to start
mucking with that in Terminal right now.
Pass the file name in a stack-allocated buffer instead of using an AK::String
when iterating directories. This dramatically reduces the amount of cycles
spent traversing the filesystem.
All right, we can now mmap() a file and it gets magically paged in from fs
in response to an NP page fault. This is really cool :^)
I need to refactor this to support sharing of read-only file-backed pages,
but it's cool to just have something working.
This is dirty but pretty cool! If we have a pending, unmasked signal for
a process that's blocked inside the kernel, we set up alternate stacks
for that process and unblock it to execute the signal handler.
A slightly different return trampoline is used here: since we need to
get back into the kernel, a dedicated syscall is used (sys$sigreturn.)
This restores the TSS contents of the process to the state it was in
while we were originally blocking in the kernel.
NOTE: There's currently only one "kernel resume TSS" so signal nesting
definitely won't work.
It only works for sending a signal to a process that's in userspace code.
We implement reception by synthesizing a PUSHA+PUSHF in the receiving process
(operating on values in the TSS.)
The TSS CS:EIP is then rerouted to the signal handler and a tiny return
trampoline is constructed in a dedicated region in the receiving process.
Also hacked up /bin/kill to be able to send arbitrary signals (kill -N PID)
This is quite cool! The syscall entry point plumbs the register dump
down to sys$fork(), which uses it to set up the child process's TSS
in order to resume execution right after the int 0x80 fork() call. :^)
This works pretty well, although there is some problem with the kernel
alias mappings used to clone the parent process's regions. If I disable
the MM::release_page_directory() code, there's no problem. Probably there's
a premature freeing of a physical page somehow.