This allows us to carry the same buffer all the way from the WAV loader
to the AudioServer mixer.
This alleviates some of the stutter, but there's still a noticeable
skip when switching buffers. We're gonna need to do better. :^)
I had to solve a bunch of things simultaneously to make this work.
Refactor AWavLoader to be a streaming loader rather than a one-shot one.
The constructor parses the header, and if everything looks good, you can
repeatedly ask the AWavLoader for sample buffers until it runs out.
Also send a message from AudioServer when a buffer has finished playing.
That allows us to implement a blocking variant of play().
Use all of this in aplay to play WAV files chunk-at-a-time.
This is definitely not perfect and it's a little glitchy and skippy,
but I think it's a step in the right direction.
It was a tad too bright. Also make sure we're using the same color in
all the different places. At some point it would be nice to improve global
color settings, etc.
We're going to be using dedicated server socket classes instead.
This was only implemented for CLocalSocket, and clients have been switched
over to using CLocalServer.
Use CLocalServer to listen for connections in WindowServer and AudioServer.
This allows us to accept incoming CLocalSocket objects from the CLocalServer
and construct client connections based on those.
Removed COpenedSocket since it's replaced by CLocalSocket.
Instead of trying to support both client and server in CLocalSocket, let's
have a specialized server class.
The basic usage is:
CLocalServer server;
server.listen("/tmp/name-of-portal");
server.on_ready_to_accept = [&] {
CLocalSocket* client = server.accept();
...
};
This will make things a lot simpler, since an accepting socket doesn't need
half of the stuff that a regular CIODevice provides. :^)
Since ChildAdded events originate from the CObject constructor, they are not
fully constructed when their parent learns that they were added.
Added a little comment about this to the child_event() declaration.
Make GWindow::close() so we can override it in GDialog and quit from the
internal event loop when the window manager tells us to close ourselves.
The dialog will return GDialog::ExecCancel in these situations.
This macro goes at the top of every CObject-derived class like so:
class SomeClass : public CObject {
C_OBJECT(SomeClass)
public:
...
At the moment, all it does is create an override for the class_name() getter
but in the future this will be used to automatically insert member functions
into these classes.
If we had already processed a couple of queued events by the time we were
told to un-nest the event loop, we'd put the entire current batch at the
head of the outer queue. This meant that we might end up trying to process
the same events multiple times.
Let's not do that. :^)
This one is a bit mysterious. I can't find any authoritative answer on what
the correct behavior is, but it seems reasonable to me that free() doesn't
step on errno, since it returns "void" and thus the caller won't know to
inspect errno anyway.
Cached tooltip windows were preventing the automatic event loop shutdown.
It's not like we were gaining much by caching these anyway, since we only
cached the GWindow, not anything on the WindowServer side.
This behavior and API was extremely counter-intuitive since our default
behavior was for applications to never exit after you close all of their
windows.
Now that we exit the event loop by default when the very last GWindow is
deleted, we don't have to worry about this.
This behavior is the new opt-out default. If you don't want your app to exit
when the last GWindow is destroyed, call this:
- void GApplication::set_quit_set_quit_when_last_window_deleted(bool)
Also renamed "windows()" to "reified_windows" in GWindow.cpp to reflect that
it only contains GWindows that have a server-side representation. :^)
Use the new watch_file() mechanism to monitor the currently open directory
for changes and refresh the model when notified. This makes FileManager
automagically show newly added files. :^)
The syscall is quite simple:
int watch_file(const char* path, int path_length);
It returns a file descriptor referring to a "InodeWatcher" object in the
kernel. It becomes readable whenever something changes about the inode.
Currently this is implemented by hooking the "metadata dirty bit" in
Inode which isn't perfect, but it's a start. :^)
We were installing libraries into /Libraries/Root, rather than in /Root.
This made the ports system behave rather unpredictable, since I had old
versions of things in /Root and new versions of things in /Libraries/Root.
The "stddbg" stream was a cute idea but we never ended up using it in
practice, so let's simplify this and implement userspace dbgprintf() on top
of a simple dbgputch() syscall instead.
This makes debugging LibC startup a little bit easier. :^)
Add a trivial CSafeSyscall template that calls a callback until it stops
returning EINTR, and use it everywhere we use select() now.
Thanks to Andreas for the suggestion of using a template parameter for
the syscall function to invoke.