/* * Copyright (c) 2023, Daniel Bertalan * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include namespace Kernel::RPi { // bcm2711-peripherals.pdf "Table 2. Auxiliary peripherals Address Map" struct MiniUARTRegisters { u32 io_data; u32 interrupt_enable; u32 interrupt_identify; u32 line_control; u32 modem_control; u32 line_status; u32 modem_status; u32 extra_control; u32 extra_status; u32 baud_rate; }; // "Table 4. AUX_ENABLES Register" enum AuxControlBits { MiniUARTEnable = 1, SPI1Enable = 1 << 1, SPI2Enable = 1 << 2, }; // "Table 8. AUX_MU_LCR_REG Register" enum LineControl { DataSize8Bits = 1, Break = 1 << 6, DLABAccess = 1 << 7, }; // "Table 13. AUX_MU_CNTL_REG Register" enum ExtraControl { ReceiverEnable = 1, TransmitterEnable = 2, }; // "Table 10. AUX_MU_LSR_REG Register" enum LineStatus { DataReady = 0, ReceiverOverrun = 1, TransmitterEmpty = 1 << 5, TransmitterIdle = 1 << 6, }; constexpr FlatPtr AUX_ENABLES = 0x21'5000; UNMAP_AFTER_INIT ErrorOr> MiniUART::create() { return DeviceManagement::try_create_device(); } UNMAP_AFTER_INIT MiniUART::MiniUART() : CharacterDevice(4, 64) , m_registers(MMIO::the().peripheral(0x21'5040)) { auto& gpio = GPIO::the(); gpio.set_pin_function(40, GPIO::PinFunction::Alternate5); // TXD1 gpio.set_pin_function(41, GPIO::PinFunction::Alternate5); // RXD1 gpio.set_pin_pull_up_down_state(Array { 40, 41 }, GPIO::PullUpDownState::Disable); // The mini UART peripheral needs to be enabled before we can configure it. MMIO::the().write(AUX_ENABLES, MMIO::the().read(AUX_ENABLES) | MiniUARTEnable); set_baud_rate(115'200); m_registers->line_control = DataSize8Bits; m_registers->extra_control = ReceiverEnable | TransmitterEnable; } UNMAP_AFTER_INIT MiniUART::~MiniUART() = default; bool MiniUART::can_read(OpenFileDescription const&, u64) const { return false; } ErrorOr MiniUART::read(OpenFileDescription&, u64, UserOrKernelBuffer&, size_t) { // FIXME: Implement reading from the MiniUART. return ENOTIMPL; } bool MiniUART::can_write(OpenFileDescription const&, u64) const { return (m_registers->line_status & TransmitterEmpty) != 0; } ErrorOr MiniUART::write(Kernel::OpenFileDescription& description, u64, Kernel::UserOrKernelBuffer const& buffer, size_t size) { if (!size) return 0; SpinlockLocker lock(m_serial_lock); if (!can_write(description, size)) return EAGAIN; return buffer.read_buffered<128>(size, [&](ReadonlyBytes bytes) { for (const auto& byte : bytes) put_char(byte); return bytes.size(); }); } void MiniUART::put_char(u8 ch) { while ((m_registers->line_status & TransmitterEmpty) == 0) Processor::wait_check(); if (ch == '\n' && !m_last_put_char_was_carriage_return) m_registers->io_data = '\r'; m_registers->io_data = ch; m_last_put_char_was_carriage_return = (ch == '\r'); } // The mini UAT's clock is generated from the system (VideoCore) clock. // See section "2.2.1. Mini UART implementation details" void MiniUART::set_baud_rate(u32 baud_rate) { auto system_clock = Timer::get_clock_rate(Timer::ClockID::V3D); m_registers->baud_rate = system_clock / (8 * baud_rate) - 1; } }