/* * Copyright (c) 2023, Dan Klishch * * SPDX-License-Identifier: BSD-2-Clause */ #include #include "AST/AST.h" #include "Compiler/GenericASTPass.h" #include "Compiler/Passes/SSABuildingPass.h" #include "Function.h" namespace JSSpecCompiler { void SSABuildingPass::process_function() { m_dtree_timer = 0; m_order.clear(); m_mark_version = 1; m_def_stack.clear(); m_next_id.clear(); m_undo_vector.clear(); m_graph = m_function->m_cfg; with_graph(m_graph->blocks_count(), [&] { compute_dominator_tree(); compute_dominance_frontiers(); place_phi_nodes(); rename_variables(); }); } // ===== compute_dominator_tree ===== namespace { class DSU { struct NodeData { size_t sdom; size_t parent; }; public: DSU(size_t n) : n(n) { m_nodes.resize(n); for (size_t i = 0; i < n; ++i) m_nodes[i] = { i, i }; } NodeData get(size_t u) { if (m_nodes[u].parent == u) return { n, u }; auto [sdom, root] = get(m_nodes[u].parent); sdom = min(sdom, m_nodes[u].sdom); return m_nodes[u] = { sdom, root }; } void merge(size_t u, size_t v, size_t v_sdom) { m_nodes[v] = { v_sdom, u }; } private: size_t n; Vector m_nodes; }; } void SSABuildingPass::compute_order(BasicBlockRef u, Vertex parent) { if (m_nodes[u->m_index].is_used) return; m_nodes[u->m_index].is_used = true; Vertex reordered_u = m_order.size(); m_order.append(RefPtr(u).release_nonnull()); reordered_u->parent = parent; for (auto* v : u->m_continuation->references()) compute_order(*v, reordered_u); } void SSABuildingPass::compute_dominator_tree() { size_t n = m_graph->blocks_count(); m_nodes.resize(n); // Algorithm is from https://tanujkhattar.wordpress.com/2016/01/11/dominator-tree-of-a-directed-graph/ , // an author writes awful CP-style write-only code, but the explanation is pretty good. // Step 1 compute_order(m_graph->start_block); VERIFY(m_order.size() == n); for (size_t i = 0; i < n; ++i) m_order[i]->m_index = i; m_graph->blocks = m_order; for (size_t i = 0; i < n; ++i) { Vertex u = i; for (auto* reference : u.block()->m_continuation->references()) { Vertex v { *reference }; v->incoming_edges.append(u); u->outgoing_edges.append(v); } } // Steps 2 & 3 DSU dsu(n); for (size_t i = n - 1; i > 0; --i) { Vertex u = i; Vertex& current_sdom = u->semi_dominator; current_sdom = n; for (Vertex v : u->incoming_edges) { if (v < u) current_sdom = min(current_sdom, v); else current_sdom = min(current_sdom, dsu.get(v).sdom); } current_sdom->buckets.append(u); for (Vertex w : u->buckets) { Vertex v = dsu.get(w).sdom; if (v->semi_dominator == w->semi_dominator) w->immediate_dominator = v->semi_dominator; else w->immediate_dominator = v; } dsu.merge(u->parent, u, current_sdom); } m_nodes[0].immediate_dominator = invalid_node; for (size_t i = 1; i < n; ++i) { Vertex u = i; if (u->immediate_dominator.is_invalid()) u->immediate_dominator = 0; else if (u->immediate_dominator != u->semi_dominator) u->immediate_dominator = u->immediate_dominator->immediate_dominator; } // Populate dtree_children & BasicBlock::immediate_dominator for (size_t i = 0; i < n; ++i) { Vertex u = i; if (i != 0) { u.block()->m_immediate_dominator = u->immediate_dominator.block(); u->immediate_dominator->dtree_children.append(u); } else { u.block()->m_immediate_dominator = nullptr; } } } // ===== compute_dominance_frontiers ===== template Vector SSABuildingPass::unique(Args const&... args) { ++m_mark_version; Vector result; (([&](auto const& list) { for (Vertex u : list) { if (u->mark != m_mark_version) { u->mark = m_mark_version; result.append(u); } } })(args), ...); return result; } void SSABuildingPass::compute_dtree_tin_tout(Vertex u) { u->tin = m_dtree_timer++; for (Vertex v : u->dtree_children) compute_dtree_tin_tout(v); u->tout = m_dtree_timer++; } bool SSABuildingPass::is_strictly_dominating(Vertex u, Vertex v) { return u != v && u->tin <= v->tin && v->tout <= u->tout; } void SSABuildingPass::compute_dominance_frontiers() { compute_dtree_tin_tout(0); // Algorithm from https://en.wikipedia.org/wiki/Static_single-assignment_form#Converting%20to%20SSA:~:text=their%20paper%20titled-,A%20Simple%2C%20Fast%20Dominance%20Algorithm,-%3A%5B13%5D . // DF(u) = {w : !(u sdom w) /\ (\exists v \in incoming_edges(v) : u dom v)} for (size_t wi = 0; wi < m_nodes.size(); ++wi) { Vertex w = wi; for (Vertex v : w->incoming_edges) { Vertex u = v; while (u != invalid_node && !is_strictly_dominating(u, w)) { u->d_frontier.append(w); u = u->immediate_dominator; } } } for (size_t i = 0; i < m_nodes.size(); ++i) { Vertex u = i; u->d_frontier = unique(u->d_frontier); } } // ===== place_phi_nodes ===== namespace { class VariableAssignmentCollector : private RecursiveASTVisitor { public: VariableAssignmentCollector(OrderedHashMap>& declarations) : m_declarations(declarations) { } void run(BasicBlockRef block) { m_current_block = block; for (auto& expression : block->m_expressions) run_in_subtree(expression); run_in_const_subtree(block->m_continuation); } protected: RecursionDecision on_entry(Tree tree) override { if (tree->is_statement()) TODO(); return RecursionDecision::Recurse; } void on_leave(Tree tree) override { if (auto binary_operation = as(tree); binary_operation) { if (binary_operation->m_operation != BinaryOperator::Assignment) return; if (auto variable = as(binary_operation->m_left); variable) { auto& vector = m_declarations.get(variable->m_name).value(); if (vector.is_empty() || vector.last() != m_current_block) vector.append(m_current_block); } } } private: BasicBlockRef m_current_block; OrderedHashMap>& m_declarations; }; } void SSABuildingPass::add_phi_node(BasicBlockRef block, NamedVariableDeclarationRef decl) { BasicBlock::PhiNode node { .var = make_ref_counted(decl) }; for (Vertex incoming : Vertex(block)->incoming_edges) { BasicBlockRef incoming_block = incoming.block(); auto value = make_ref_counted(decl); node.branches.append({ .block = incoming_block, .value = value }); } block->m_phi_nodes.append(move(node)); } void SSABuildingPass::place_phi_nodes() { // Entry block has implicit declarations of all variables. OrderedHashMap> m_declarations; for (auto const& [name, var_decl] : m_function->m_local_variables) m_declarations.set(var_decl, { m_order[0] }); m_declarations.set(m_function->m_named_return_value, { m_order[0] }); VariableAssignmentCollector collector(m_declarations); for (auto const& block : m_order) collector.run(block); for (auto const& [decl, blocks] : m_declarations) { ++m_mark_version; Queue queue; for (auto const& block : blocks) queue.enqueue(block); while (!queue.is_empty()) { Vertex u(queue.dequeue()); for (Vertex frontier : u->d_frontier) { if (frontier->mark == m_mark_version) continue; frontier->mark = m_mark_version; add_phi_node(frontier.block(), decl); } } } } // ===== rename_variables ===== namespace { template class VariableRenamer : private RecursiveASTVisitor { public: VariableRenamer(CreateSSAVariableFunc create, RenameVariableFunc rename) : m_create(create) , m_rename(rename) { } void run(BasicBlockRef block) { for (auto& expression : block->m_expressions) run_in_subtree(expression); run_in_const_subtree(block->m_continuation); } protected: RecursionDecision on_entry(Tree tree) override { if (tree->is_statement()) TODO(); auto binary_operation = as(tree); if (binary_operation && binary_operation->m_operation == BinaryOperator::Assignment) { run_in_subtree(binary_operation->m_right); if (auto variable = as(binary_operation->m_left); variable) { m_create(variable->m_name); m_rename(variable.release_nonnull()); } else { run_in_subtree(binary_operation->m_left); } return RecursionDecision::Continue; } if (auto variable = as(tree); variable) { m_rename(variable.release_nonnull()); return RecursionDecision::Continue; } return RecursionDecision::Recurse; } private: CreateSSAVariableFunc m_create; RenameVariableFunc m_rename; }; } void SSABuildingPass::make_new_ssa_variable_for(NamedVariableDeclarationRef var) { m_undo_vector.append(var); u64 id = 0; if (auto it = m_next_id.find(var); it == m_next_id.end()) m_next_id.set(var, 1); else id = it->value++; auto ssa_decl = make_ref_counted(id); m_function->m_local_ssa_variables.append(ssa_decl); if (auto it = m_def_stack.find(var); it == m_def_stack.end()) m_def_stack.set(var, { ssa_decl }); else it->value.append(ssa_decl); } void SSABuildingPass::rename_variable(VariableRef var) { var->m_ssa = m_def_stack.get(var->m_name).value().last(); } void SSABuildingPass::rename_variables(Vertex u, Vertex from) { size_t rollback_point = m_undo_vector.size(); for (auto& phi_node : u.block()->m_phi_nodes) { // TODO: Find the right branch index without iterating through all of the branches. bool found = false; for (auto& branch : phi_node.branches) { if (branch.block->m_index == from) { rename_variable(branch.value); found = true; break; } } VERIFY(found); } if (u->mark == m_mark_version) return; u->mark = m_mark_version; for (auto& phi_node : u.block()->m_phi_nodes) { make_new_ssa_variable_for(phi_node.var->m_name); rename_variable(phi_node.var); } VariableRenamer renamer( [&](NamedVariableDeclarationRef decl) { make_new_ssa_variable_for(move(decl)); }, [&](VariableRef var) { rename_variable(move(var)); }); renamer.run(u.block()); if (auto function_return = as(u.block()->m_continuation); function_return) { // CFG should have exactly one ControlFlowFunctionReturn. VERIFY(m_function->m_return_value == nullptr); m_function->m_return_value = function_return->m_return_value->m_ssa; } for (size_t j : u->outgoing_edges) rename_variables(j, u); while (m_undo_vector.size() > rollback_point) (void)m_def_stack.get(m_undo_vector.take_last()).value().take_last(); } void SSABuildingPass::rename_variables() { HashMap argument_index_by_name; for (size_t i = 0; i < m_function->m_arguments.size(); ++i) argument_index_by_name.set(m_function->m_arguments[i].name, i); m_function->m_ssa_arguments.resize(m_function->m_arguments.size()); for (auto const& [name, var_decl] : m_function->m_local_variables) { make_new_ssa_variable_for(var_decl); if (auto maybe_index = argument_index_by_name.get(name); maybe_index.has_value()) { size_t index = maybe_index.value(); m_function->m_ssa_arguments[index] = m_def_stack.get(var_decl).value()[0]; } } make_new_ssa_variable_for(m_function->m_named_return_value); ++m_mark_version; rename_variables(0); VERIFY(m_function->m_return_value); m_function->reindex_ssa_variables(); } }