#include #include #include #include #include #include #include #include #include #include #define IPV4_SOCKET_DEBUG Lockable>& IPv4Socket::sockets_by_udp_port() { static Lockable>* s_map; if (!s_map) s_map = new Lockable>; return *s_map; } Lockable>& IPv4Socket::sockets_by_tcp_port() { static Lockable>* s_map; if (!s_map) s_map = new Lockable>; return *s_map; } IPv4SocketHandle IPv4Socket::from_tcp_port(word port) { RetainPtr socket; { LOCKER(sockets_by_tcp_port().lock()); auto it = sockets_by_tcp_port().resource().find(port); if (it == sockets_by_tcp_port().resource().end()) return { }; socket = (*it).value; ASSERT(socket); } return { move(socket) }; } IPv4SocketHandle IPv4Socket::from_udp_port(word port) { RetainPtr socket; { LOCKER(sockets_by_udp_port().lock()); auto it = sockets_by_udp_port().resource().find(port); if (it == sockets_by_udp_port().resource().end()) return { }; socket = (*it).value; ASSERT(socket); } return { move(socket) }; } Lockable>& IPv4Socket::all_sockets() { static Lockable>* s_table; if (!s_table) s_table = new Lockable>; return *s_table; } Retained IPv4Socket::create(int type, int protocol) { return adopt(*new IPv4Socket(type, protocol)); } IPv4Socket::IPv4Socket(int type, int protocol) : Socket(AF_INET, type, protocol) { kprintf("%s(%u) IPv4Socket{%p} created with type=%u, protocol=%d\n", current->name().characters(), current->pid(), this, type, protocol); LOCKER(all_sockets().lock()); all_sockets().resource().set(this); } IPv4Socket::~IPv4Socket() { { LOCKER(all_sockets().lock()); all_sockets().resource().remove(this); } if (type() == SOCK_DGRAM) { LOCKER(sockets_by_udp_port().lock()); sockets_by_udp_port().resource().remove(m_source_port); } if (type() == SOCK_STREAM) { LOCKER(sockets_by_tcp_port().lock()); sockets_by_tcp_port().resource().remove(m_source_port); } } bool IPv4Socket::get_address(sockaddr* address, socklen_t* address_size) { // FIXME: Look into what fallback behavior we should have here. if (*address_size != sizeof(sockaddr_in)) return false; memcpy(address, &m_destination_address, sizeof(sockaddr_in)); *address_size = sizeof(sockaddr_in); return true; } KResult IPv4Socket::bind(const sockaddr* address, socklen_t address_size) { ASSERT(!is_connected()); if (address_size != sizeof(sockaddr_in)) return KResult(-EINVAL); if (address->sa_family != AF_INET) return KResult(-EINVAL); ASSERT_NOT_REACHED(); } KResult IPv4Socket::connect(const sockaddr* address, socklen_t address_size) { ASSERT(!m_bound); if (address_size != sizeof(sockaddr_in)) return KResult(-EINVAL); if (address->sa_family != AF_INET) return KResult(-EINVAL); auto& ia = *(const sockaddr_in*)address; m_destination_address = IPv4Address((const byte*)&ia.sin_addr.s_addr); m_destination_port = ntohs(ia.sin_port); if (type() != SOCK_STREAM) return KSuccess; // FIXME: Figure out the adapter somehow differently. auto* adapter = NetworkAdapter::from_ipv4_address(IPv4Address(192, 168, 5, 2)); if (!adapter) ASSERT_NOT_REACHED(); allocate_source_port_if_needed(); m_tcp_sequence_number = 0; m_tcp_ack_number = 0; send_tcp_packet(*adapter, TCPFlags::SYN); m_tcp_state = TCPState::Connecting1; current->set_blocked_socket(this); block(Process::BlockedConnect); Scheduler::yield(); ASSERT(is_connected()); return KSuccess; } void IPv4Socket::attach_fd(SocketRole) { ++m_attached_fds; } void IPv4Socket::detach_fd(SocketRole) { --m_attached_fds; } bool IPv4Socket::can_read(SocketRole) const { return m_can_read; } ssize_t IPv4Socket::read(SocketRole, byte*, ssize_t) { ASSERT_NOT_REACHED(); } ssize_t IPv4Socket::write(SocketRole, const byte*, ssize_t) { ASSERT_NOT_REACHED(); } bool IPv4Socket::can_write(SocketRole) const { ASSERT_NOT_REACHED(); } void IPv4Socket::allocate_source_port_if_needed() { if (m_source_port) return; if (type() == SOCK_DGRAM) { // This is not a very efficient allocation algorithm. // FIXME: Replace it with a bitmap or some other fast-paced looker-upper. LOCKER(sockets_by_udp_port().lock()); for (word port = 2000; port < 60000; ++port) { auto it = sockets_by_udp_port().resource().find(port); if (it == sockets_by_udp_port().resource().end()) { m_source_port = port; sockets_by_udp_port().resource().set(port, this); return; } } ASSERT_NOT_REACHED(); } if (type() == SOCK_STREAM) { // This is not a very efficient allocation algorithm. // FIXME: Replace it with a bitmap or some other fast-paced looker-upper. LOCKER(sockets_by_tcp_port().lock()); for (word port = 2000; port < 60000; ++port) { auto it = sockets_by_tcp_port().resource().find(port); if (it == sockets_by_tcp_port().resource().end()) { m_source_port = port; sockets_by_tcp_port().resource().set(port, this); return; } } ASSERT_NOT_REACHED(); } } struct [[gnu::packed]] TCPPseudoHeader { IPv4Address source; IPv4Address destination; byte zero; byte protocol; NetworkOrdered payload_size; }; NetworkOrdered IPv4Socket::compute_tcp_checksum(const IPv4Address& source, const IPv4Address& destination, const TCPPacket& packet, word payload_size) { TCPPseudoHeader pseudo_header { source, destination, 0, (byte)IPv4Protocol::TCP, sizeof(TCPPacket) + payload_size }; dword checksum = 0; auto* w = (const NetworkOrdered*)&pseudo_header; for (size_t i = 0; i < sizeof(pseudo_header) / sizeof(word); ++i) { checksum += w[i]; if (checksum > 0xffff) checksum = (checksum >> 16) + (checksum & 0xffff); } w = (const NetworkOrdered*)&packet; for (size_t i = 0; i < sizeof(packet) / sizeof(word); ++i) { checksum += w[i]; if (checksum > 0xffff) checksum = (checksum >> 16) + (checksum & 0xffff); } ASSERT(packet.data_offset() * 4 == sizeof(TCPPacket)); w = (const NetworkOrdered*)packet.payload(); for (size_t i = 0; i < payload_size / sizeof(word); ++i) { checksum += w[i]; if (checksum > 0xffff) checksum = (checksum >> 16) + (checksum & 0xffff); } if (payload_size & 1) { word expanded_byte = ((const byte*)packet.payload())[payload_size - 1]; checksum += expanded_byte; if (checksum > 0xffff) checksum = (checksum >> 16) + (checksum & 0xffff); } return ~(checksum & 0xffff); } void IPv4Socket::send_tcp_packet(NetworkAdapter& adapter, word flags, const void* payload, size_t payload_size) { auto buffer = ByteBuffer::create_zeroed(sizeof(TCPPacket) + payload_size); auto& tcp_packet = *(TCPPacket*)(buffer.pointer()); ASSERT(m_source_port); tcp_packet.set_source_port(m_source_port); tcp_packet.set_destination_port(m_destination_port); tcp_packet.set_window_size(1024); tcp_packet.set_sequence_number(m_tcp_sequence_number); tcp_packet.set_data_offset(sizeof(TCPPacket) / sizeof(dword)); tcp_packet.set_flags(flags); if (flags & TCPFlags::ACK) tcp_packet.set_ack_number(m_tcp_ack_number); if (flags == TCPFlags::SYN) { ++m_tcp_sequence_number; } else { m_tcp_sequence_number += payload_size; } memcpy(tcp_packet.payload(), payload, payload_size); tcp_packet.set_checksum(compute_tcp_checksum(adapter.ipv4_address(), m_destination_address, tcp_packet, payload_size)); kprintf("sending tcp packet from %s:%u to %s:%u with (%s %s) seq_no=%u, ack_no=%u\n", adapter.ipv4_address().to_string().characters(), source_port(), m_destination_address.to_string().characters(), m_destination_port, tcp_packet.has_syn() ? "SYN" : "", tcp_packet.has_ack() ? "ACK" : "", tcp_packet.sequence_number(), tcp_packet.ack_number() ); adapter.send_ipv4(MACAddress(), m_destination_address, IPv4Protocol::TCP, move(buffer)); } ssize_t IPv4Socket::sendto(const void* data, size_t data_length, int flags, const sockaddr* addr, socklen_t addr_length) { (void)flags; if (addr && addr_length != sizeof(sockaddr_in)) return -EINVAL; // FIXME: Find the adapter some better way! auto* adapter = NetworkAdapter::from_ipv4_address(IPv4Address(192, 168, 5, 2)); if (!adapter) { // FIXME: Figure out which error code to return. ASSERT_NOT_REACHED(); } if (addr) { if (addr->sa_family != AF_INET) { kprintf("sendto: Bad address family: %u is not AF_INET!\n", addr->sa_family); return -EAFNOSUPPORT; } auto& ia = *(const sockaddr_in*)addr; m_destination_address = IPv4Address((const byte*)&ia.sin_addr.s_addr); m_destination_port = ntohs(ia.sin_port); } allocate_source_port_if_needed(); kprintf("sendto: destination=%s:%u\n", m_destination_address.to_string().characters(), m_destination_port); if (type() == SOCK_RAW) { adapter->send_ipv4(MACAddress(), m_destination_address, (IPv4Protocol)protocol(), ByteBuffer::copy((const byte*)data, data_length)); return data_length; } if (type() == SOCK_DGRAM) { auto buffer = ByteBuffer::create_zeroed(sizeof(UDPPacket) + data_length); auto& udp_packet = *(UDPPacket*)(buffer.pointer()); udp_packet.set_source_port(m_source_port); udp_packet.set_destination_port(m_destination_port); udp_packet.set_length(sizeof(UDPPacket) + data_length); memcpy(udp_packet.payload(), data, data_length); kprintf("sending as udp packet from %s:%u to %s:%u!\n", adapter->ipv4_address().to_string().characters(), source_port(), m_destination_address.to_string().characters(), m_destination_port); adapter->send_ipv4(MACAddress(), m_destination_address, IPv4Protocol::UDP, move(buffer)); return data_length; } if (type() == SOCK_STREAM) { send_tcp_packet(*adapter, TCPFlags::PUSH | TCPFlags::ACK, data, data_length); return data_length; } ASSERT_NOT_REACHED(); } ssize_t IPv4Socket::recvfrom(void* buffer, size_t buffer_length, int flags, sockaddr* addr, socklen_t* addr_length) { (void)flags; if (addr_length && *addr_length < sizeof(sockaddr_in)) return -EINVAL; #ifdef IPV4_SOCKET_DEBUG kprintf("recvfrom: type=%d, source_port=%u\n", type(), source_port()); #endif ByteBuffer packet_buffer; { LOCKER(lock()); if (!m_receive_queue.is_empty()) { packet_buffer = m_receive_queue.take_first(); m_can_read = !m_receive_queue.is_empty(); } } if (packet_buffer.is_null()) { current->set_blocked_socket(this); load_receive_deadline(); block(Process::BlockedReceive); Scheduler::yield(); LOCKER(lock()); if (!m_can_read) { // Unblocked due to timeout. return -EAGAIN; } ASSERT(m_can_read); ASSERT(!m_receive_queue.is_empty()); packet_buffer = m_receive_queue.take_first(); m_can_read = !m_receive_queue.is_empty(); } ASSERT(!packet_buffer.is_null()); auto& ipv4_packet = *(const IPv4Packet*)(packet_buffer.pointer()); if (addr) { auto& ia = *(sockaddr_in*)addr; memcpy(&ia.sin_addr, &m_destination_address, sizeof(IPv4Address)); ia.sin_family = AF_INET; ASSERT(addr_length); *addr_length = sizeof(sockaddr_in); } if (type() == SOCK_RAW) { ASSERT(buffer_length >= ipv4_packet.payload_size()); memcpy(buffer, ipv4_packet.payload(), ipv4_packet.payload_size()); return ipv4_packet.payload_size(); } if (type() == SOCK_DGRAM) { auto& udp_packet = *static_cast(ipv4_packet.payload()); ASSERT(udp_packet.length() >= sizeof(UDPPacket)); // FIXME: This should be rejected earlier. ASSERT(buffer_length >= (udp_packet.length() - sizeof(UDPPacket))); if (addr) { auto& ia = *(sockaddr_in*)addr; ia.sin_port = htons(udp_packet.destination_port()); } memcpy(buffer, udp_packet.payload(), udp_packet.length() - sizeof(UDPPacket)); return udp_packet.length() - sizeof(UDPPacket); } if (type() == SOCK_STREAM) { auto& tcp_packet = *static_cast(ipv4_packet.payload()); size_t payload_size = packet_buffer.size() - sizeof(IPv4Packet) - tcp_packet.header_size(); ASSERT(buffer_length >= payload_size); if (addr) { auto& ia = *(sockaddr_in*)addr; ia.sin_port = htons(tcp_packet.destination_port()); } memcpy(buffer, tcp_packet.payload(), payload_size); return payload_size; } ASSERT_NOT_REACHED(); } void IPv4Socket::did_receive(ByteBuffer&& packet) { LOCKER(lock()); m_receive_queue.append(move(packet)); m_can_read = true; #ifdef IPV4_SOCKET_DEBUG kprintf("IPv4Socket(%p): did_receive %d bytes, packets in queue: %d\n", this, packet.size(), m_receive_queue.size_slow()); #endif }