/* * Copyright (c) 2021, Hunter Salyer * Copyright (c) 2022, Gregory Bertilson * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include "Decoder.h" #include "Parser.h" #include "Utilities.h" #if defined(AK_COMPILER_GCC) # pragma GCC optimize("O3") #endif namespace Video::VP9 { #define TRY_READ(expression) DECODER_TRY(DecoderErrorCategory::Corrupted, expression) Parser::Parser(Decoder& decoder) : m_probability_tables(make()) , m_decoder(decoder) { } Parser::~Parser() { } Vector Parser::parse_superframe_sizes(ReadonlyBytes frame_data) { if (frame_data.size() < 1) return {}; // The decoder determines the presence of a superframe by: // 1. parsing the final byte of the chunk and checking that the superframe_marker equals 0b110, // If the checks in steps 1 and 3 both pass, then the chunk is determined to contain a superframe and each // frame in the superframe is passed to the decoding process in turn. // Otherwise, the chunk is determined to not contain a superframe, and the whole chunk is passed to the // decoding process. // NOTE: Reading from span data will be quicker than spinning up a BitStream. u8 superframe_byte = frame_data[frame_data.size() - 1]; // NOTE: We have to read out of the byte from the little end first, hence the padding bits in the masks below. u8 superframe_marker = superframe_byte & 0b1110'0000; if (superframe_marker == 0b1100'0000) { u8 bytes_per_framesize = ((superframe_byte >> 3) & 0b11) + 1; u8 frames_in_superframe = (superframe_byte & 0b111) + 1; // 2. setting the total size of the superframe_index SzIndex equal to 2 + NumFrames * SzBytes, size_t index_size = 2 + bytes_per_framesize * frames_in_superframe; if (index_size > frame_data.size()) return {}; auto superframe_header_data = frame_data.data() + frame_data.size() - index_size; u8 start_superframe_byte = *(superframe_header_data++); // 3. checking that the first byte of the superframe_index matches the final byte. if (superframe_byte != start_superframe_byte) return {}; Vector result; for (u8 i = 0; i < frames_in_superframe; i++) { size_t frame_size = 0; for (u8 j = 0; j < bytes_per_framesize; j++) frame_size |= (static_cast(*(superframe_header_data++)) << (j * 8)); result.append(frame_size); } return result; } return {}; } /* (6.1) */ DecoderErrorOr Parser::parse_frame(ReadonlyBytes frame_data) { m_bit_stream = make(frame_data.data(), frame_data.size()); m_syntax_element_counter = make(); auto frame_context = TRY(uncompressed_header()); if (!trailing_bits()) return DecoderError::corrupted("Trailing bits were non-zero"sv); // FIXME: This should not be an error. Spec says that we consume padding bits until the end of the sample. if (frame_context.header_size_in_bytes == 0) return DecoderError::corrupted("Frame header is zero-sized"sv); m_probability_tables->load_probs(frame_context.probability_context_index); m_probability_tables->load_probs2(frame_context.probability_context_index); m_syntax_element_counter->clear_counts(); TRY_READ(m_bit_stream->init_bool(frame_context.header_size_in_bytes)); TRY(compressed_header(frame_context)); TRY_READ(m_bit_stream->exit_bool()); TRY(m_decoder.allocate_buffers(frame_context)); TRY(decode_tiles(frame_context)); TRY(refresh_probs(frame_context)); m_previous_frame_type = frame_context.type; m_previous_frame_size = frame_context.size(); m_previous_show_frame = frame_context.shows_a_frame(); m_previous_color_config = frame_context.color_config; m_previous_loop_filter_ref_deltas = frame_context.loop_filter_reference_deltas; m_previous_loop_filter_mode_deltas = frame_context.loop_filter_mode_deltas; return frame_context; } bool Parser::trailing_bits() { while (m_bit_stream->bits_remaining() & 7u) { if (MUST(m_bit_stream->read_bit())) return false; } return true; } DecoderErrorOr Parser::refresh_probs(FrameContext const& frame_context) { if (!frame_context.error_resilient_mode && !frame_context.parallel_decoding_mode) { m_probability_tables->load_probs(frame_context.probability_context_index); TRY(m_decoder.adapt_coef_probs(frame_context.is_inter_predicted())); if (frame_context.is_inter_predicted()) { m_probability_tables->load_probs2(frame_context.probability_context_index); TRY(m_decoder.adapt_non_coef_probs(frame_context)); } } if (frame_context.should_replace_probability_context) m_probability_tables->save_probs(frame_context.probability_context_index); return {}; } DecoderErrorOr Parser::read_color_range() { if (TRY_READ(m_bit_stream->read_bit())) return ColorRange::Full; return ColorRange::Studio; } /* (6.2) */ DecoderErrorOr Parser::uncompressed_header() { FrameContext frame_context; frame_context.color_config = m_previous_color_config; auto frame_marker = TRY_READ(m_bit_stream->read_bits(2)); if (frame_marker != 2) return DecoderError::corrupted("uncompressed_header: Frame marker must be 2"sv); auto profile_low_bit = TRY_READ(m_bit_stream->read_bit()); auto profile_high_bit = TRY_READ(m_bit_stream->read_bit()); frame_context.profile = (profile_high_bit << 1u) + profile_low_bit; if (frame_context.profile == 3 && TRY_READ(m_bit_stream->read_bit())) return DecoderError::corrupted("uncompressed_header: Profile 3 reserved bit was non-zero"sv); if (TRY_READ(m_bit_stream->read_bit())) { frame_context.set_existing_frame_to_show(TRY_READ(m_bit_stream->read_bits(3))); return frame_context; } bool is_keyframe = !TRY_READ(m_bit_stream->read_bit()); if (!TRY_READ(m_bit_stream->read_bit())) frame_context.set_frame_hidden(); frame_context.error_resilient_mode = TRY_READ(m_bit_stream->read_bit()); FrameType type; Gfx::Size frame_size; Gfx::Size render_size; u8 reference_frames_to_update_flags = 0xFF; // Save frame to all reference indices by default. enum class ResetProbabilities : u8 { No = 0, // 1 also means No here, but we don't need to do anything with the No case. OnlyCurrent = 2, All = 3, }; ResetProbabilities reset_frame_context = ResetProbabilities::All; if (is_keyframe) { type = FrameType::KeyFrame; TRY(frame_sync_code()); frame_context.color_config = TRY(parse_color_config(frame_context)); frame_size = TRY(parse_frame_size()); render_size = TRY(parse_render_size(frame_size)); } else { if (!frame_context.shows_a_frame() && TRY_READ(m_bit_stream->read_bit())) { type = FrameType::IntraOnlyFrame; } else { type = FrameType::InterFrame; reset_frame_context = ResetProbabilities::No; } if (!frame_context.error_resilient_mode) reset_frame_context = static_cast(TRY_READ(m_bit_stream->read_bits(2))); if (type == FrameType::IntraOnlyFrame) { TRY(frame_sync_code()); frame_context.color_config = frame_context.profile > 0 ? TRY(parse_color_config(frame_context)) : ColorConfig(); reference_frames_to_update_flags = TRY_READ(m_bit_stream->read_f8()); frame_size = TRY(parse_frame_size()); render_size = TRY(parse_render_size(frame_size)); } else { reference_frames_to_update_flags = TRY_READ(m_bit_stream->read_f8()); for (auto i = 0; i < 3; i++) { frame_context.reference_frame_indices[i] = TRY_READ(m_bit_stream->read_bits(3)); frame_context.reference_frame_sign_biases[LastFrame + i] = TRY_READ(m_bit_stream->read_bit()); } frame_size = TRY(parse_frame_size_with_refs(frame_context.reference_frame_indices)); render_size = TRY(parse_render_size(frame_size)); frame_context.high_precision_motion_vectors_allowed = TRY_READ(m_bit_stream->read_bit()); frame_context.interpolation_filter = TRY(read_interpolation_filter()); } } bool should_replace_probability_context = false; bool parallel_decoding_mode = true; if (!frame_context.error_resilient_mode) { should_replace_probability_context = TRY_READ(m_bit_stream->read_bit()); parallel_decoding_mode = TRY_READ(m_bit_stream->read_bit()); } u8 probability_context_index = TRY_READ(m_bit_stream->read_bits(2)); switch (reset_frame_context) { case ResetProbabilities::All: setup_past_independence(); for (auto i = 0; i < 4; i++) { m_probability_tables->save_probs(i); } probability_context_index = 0; break; case ResetProbabilities::OnlyCurrent: setup_past_independence(); m_probability_tables->save_probs(probability_context_index); probability_context_index = 0; break; default: break; } frame_context.type = type; DECODER_TRY_ALLOC(frame_context.set_size(frame_size)); frame_context.render_size = render_size; TRY(compute_image_size(frame_context)); frame_context.reference_frames_to_update_flags = reference_frames_to_update_flags; frame_context.parallel_decoding_mode = parallel_decoding_mode; frame_context.should_replace_probability_context = should_replace_probability_context; frame_context.probability_context_index = probability_context_index; TRY(loop_filter_params(frame_context)); TRY(quantization_params(frame_context)); TRY(segmentation_params()); TRY(tile_info(frame_context)); frame_context.header_size_in_bytes = TRY_READ(m_bit_stream->read_f16()); return frame_context; } DecoderErrorOr Parser::frame_sync_code() { if (TRY_READ(m_bit_stream->read_f8()) != 0x49) return DecoderError::corrupted("frame_sync_code: Byte 0 was not 0x49."sv); if (TRY_READ(m_bit_stream->read_f8()) != 0x83) return DecoderError::corrupted("frame_sync_code: Byte 1 was not 0x83."sv); if (TRY_READ(m_bit_stream->read_f8()) != 0x42) return DecoderError::corrupted("frame_sync_code: Byte 2 was not 0x42."sv); return {}; } DecoderErrorOr Parser::parse_color_config(FrameContext const& frame_context) { // (6.2.2) color_config( ) u8 bit_depth; if (frame_context.profile >= 2) { bit_depth = TRY_READ(m_bit_stream->read_bit()) ? 12 : 10; } else { bit_depth = 8; } auto color_space = static_cast(TRY_READ(m_bit_stream->read_bits(3))); VERIFY(color_space <= ColorSpace::RGB); ColorRange color_range; bool subsampling_x, subsampling_y; if (color_space != ColorSpace::RGB) { color_range = TRY(read_color_range()); if (frame_context.profile == 1 || frame_context.profile == 3) { subsampling_x = TRY_READ(m_bit_stream->read_bit()); subsampling_y = TRY_READ(m_bit_stream->read_bit()); if (TRY_READ(m_bit_stream->read_bit())) return DecoderError::corrupted("color_config: Subsampling reserved zero was set"sv); } else { subsampling_x = true; subsampling_y = true; } } else { color_range = ColorRange::Full; if (frame_context.profile == 1 || frame_context.profile == 3) { subsampling_x = false; subsampling_y = false; if (TRY_READ(m_bit_stream->read_bit())) return DecoderError::corrupted("color_config: RGB reserved zero was set"sv); } else { // FIXME: Spec does not specify the subsampling value here. Is this an error or should we set a default? VERIFY_NOT_REACHED(); } } return ColorConfig { bit_depth, color_space, color_range, subsampling_x, subsampling_y }; } DecoderErrorOr> Parser::parse_frame_size() { return Gfx::Size { TRY_READ(m_bit_stream->read_f16()) + 1, TRY_READ(m_bit_stream->read_f16()) + 1 }; } DecoderErrorOr> Parser::parse_render_size(Gfx::Size frame_size) { // FIXME: This function should save this bit as a value in the FrameContext. The bit can be // used in files where the pixel aspect ratio changes between samples in the video. // If the bit is set, the pixel aspect ratio should be recalculated, whereas if only // the frame size has changed and the render size is unadjusted, then the pixel aspect // ratio should be retained and the new render size determined based on that. // See the Firefox source code here: // https://searchfox.org/mozilla-central/source/dom/media/platforms/wrappers/MediaChangeMonitor.cpp#268-276 if (!TRY_READ(m_bit_stream->read_bit())) return frame_size; return Gfx::Size { TRY_READ(m_bit_stream->read_f16()) + 1, TRY_READ(m_bit_stream->read_f16()) + 1 }; } DecoderErrorOr> Parser::parse_frame_size_with_refs(Array const& reference_indices) { Optional> size; for (auto frame_index : reference_indices) { if (TRY_READ(m_bit_stream->read_bit())) { size.emplace(m_ref_frame_size[frame_index]); break; } } if (size.has_value()) return size.value(); return TRY(parse_frame_size()); } DecoderErrorOr Parser::compute_image_size(FrameContext& frame_context) { // 7.2.6 Compute image size semantics // When compute_image_size is invoked, the following ordered steps occur: // 1. If this is the first time compute_image_size is invoked, or if either FrameWidth or FrameHeight have // changed in value compared to the previous time this function was invoked, then the segmentation map is // cleared to all zeros by setting SegmentId[ row ][ col ] equal to 0 for row = 0..MiRows-1 and col = // 0..MiCols-1. // FIXME: What does this mean? SegmentIds is scoped to one frame, so it will not contain values here. It's // also suspicious that spec refers to this as SegmentId rather than SegmentIds (plural). Is this // supposed to refer to PrevSegmentIds? bool first_invoke = m_is_first_compute_image_size_invoke; m_is_first_compute_image_size_invoke = false; bool same_size = m_previous_frame_size == frame_context.size(); // 2. The variable UsePrevFrameMvs is set equal to 1 if all of the following conditions are true: // a. This is not the first time compute_image_size is invoked. // b. Both FrameWidth and FrameHeight have the same value compared to the previous time this function // was invoked. // c. show_frame was equal to 1 the previous time this function was invoked. // d. error_resilient_mode is equal to 0. // e. FrameIsIntra is equal to 0. // Otherwise, UsePrevFrameMvs is set equal to 0. m_use_prev_frame_mvs = !first_invoke && same_size && m_previous_show_frame && !frame_context.error_resilient_mode && frame_context.is_inter_predicted(); return {}; } DecoderErrorOr Parser::read_interpolation_filter() { if (TRY_READ(m_bit_stream->read_bit())) { return InterpolationFilter::Switchable; } return literal_to_type[TRY_READ(m_bit_stream->read_bits(2))]; } DecoderErrorOr Parser::loop_filter_params(FrameContext& frame_context) { frame_context.loop_filter_level = TRY_READ(m_bit_stream->read_bits(6)); frame_context.loop_filter_sharpness = TRY_READ(m_bit_stream->read_bits(3)); frame_context.loop_filter_delta_enabled = TRY_READ(m_bit_stream->read_bit()); auto reference_deltas = m_previous_loop_filter_ref_deltas; auto mode_deltas = m_previous_loop_filter_mode_deltas; if (frame_context.loop_filter_delta_enabled && TRY_READ(m_bit_stream->read_bit())) { for (auto& loop_filter_ref_delta : reference_deltas) { if (TRY_READ(m_bit_stream->read_bit())) loop_filter_ref_delta = TRY_READ(m_bit_stream->read_s(6)); } for (auto& loop_filter_mode_delta : mode_deltas) { if (TRY_READ(m_bit_stream->read_bit())) loop_filter_mode_delta = TRY_READ(m_bit_stream->read_s(6)); } } frame_context.loop_filter_reference_deltas = reference_deltas; frame_context.loop_filter_mode_deltas = mode_deltas; return {}; } DecoderErrorOr Parser::quantization_params(FrameContext& frame_context) { frame_context.base_quantizer_index = TRY_READ(m_bit_stream->read_f8()); frame_context.y_dc_quantizer_index_delta = TRY(read_delta_q()); frame_context.uv_dc_quantizer_index_delta = TRY(read_delta_q()); frame_context.uv_ac_quantizer_index_delta = TRY(read_delta_q()); return {}; } DecoderErrorOr Parser::read_delta_q() { if (TRY_READ(m_bit_stream->read_bit())) return TRY_READ(m_bit_stream->read_s(4)); return 0; } DecoderErrorOr Parser::segmentation_params() { m_segmentation_enabled = TRY_READ(m_bit_stream->read_bit()); if (!m_segmentation_enabled) return {}; m_segmentation_update_map = TRY_READ(m_bit_stream->read_bit()); if (m_segmentation_update_map) { for (auto& segmentation_tree_prob : m_segmentation_tree_probs) segmentation_tree_prob = TRY(read_prob()); m_segmentation_temporal_update = TRY_READ(m_bit_stream->read_bit()); for (auto& segmentation_pred_prob : m_segmentation_pred_prob) segmentation_pred_prob = m_segmentation_temporal_update ? TRY(read_prob()) : 255; } auto segmentation_update_data = (TRY_READ(m_bit_stream->read_bit())); if (!segmentation_update_data) return {}; m_segmentation_abs_or_delta_update = TRY_READ(m_bit_stream->read_bit()); for (auto i = 0; i < MAX_SEGMENTS; i++) { for (auto j = 0; j < SEG_LVL_MAX; j++) { auto feature_value = 0; auto feature_enabled = TRY_READ(m_bit_stream->read_bit()); m_feature_enabled[i][j] = feature_enabled; if (feature_enabled) { auto bits_to_read = segmentation_feature_bits[j]; feature_value = TRY_READ(m_bit_stream->read_bits(bits_to_read)); if (segmentation_feature_signed[j]) { if (TRY_READ(m_bit_stream->read_bit())) feature_value = -feature_value; } } m_feature_data[i][j] = feature_value; } } return {}; } DecoderErrorOr Parser::read_prob() { if (TRY_READ(m_bit_stream->read_bit())) return TRY_READ(m_bit_stream->read_f8()); return 255; } DecoderErrorOr Parser::tile_info(FrameContext& frame_context) { auto superblock_columns = frame_context.superblock_columns(); auto min_log2_tile_cols = calc_min_log2_tile_cols(superblock_columns); auto max_log2_tile_cols = calc_max_log2_tile_cols(superblock_columns); m_tile_cols_log2 = min_log2_tile_cols; while (m_tile_cols_log2 < max_log2_tile_cols) { if (TRY_READ(m_bit_stream->read_bit())) m_tile_cols_log2++; else break; } m_tile_rows_log2 = TRY_READ(m_bit_stream->read_bit()); if (m_tile_rows_log2) { m_tile_rows_log2 += TRY_READ(m_bit_stream->read_bit()); } return {}; } u16 Parser::calc_min_log2_tile_cols(u32 superblock_columns) { auto min_log_2 = 0u; while ((u32)(MAX_TILE_WIDTH_B64 << min_log_2) < superblock_columns) min_log_2++; return min_log_2; } u16 Parser::calc_max_log2_tile_cols(u32 superblock_columns) { u16 max_log_2 = 1; while ((superblock_columns >> max_log_2) >= MIN_TILE_WIDTH_B64) max_log_2++; return max_log_2 - 1; } void Parser::setup_past_independence() { for (auto i = 0; i < 8; i++) { for (auto j = 0; j < 4; j++) { m_feature_data[i][j] = 0; m_feature_enabled[i][j] = false; } } m_previous_block_contexts.reset(); m_segmentation_abs_or_delta_update = false; m_previous_loop_filter_ref_deltas[IntraFrame] = 1; m_previous_loop_filter_ref_deltas[LastFrame] = 0; m_previous_loop_filter_ref_deltas[GoldenFrame] = -1; m_previous_loop_filter_ref_deltas[AltRefFrame] = -1; m_previous_loop_filter_mode_deltas.fill(0); m_probability_tables->reset_probs(); } DecoderErrorOr Parser::compressed_header(FrameContext& frame_context) { TRY(read_tx_mode(frame_context)); if (m_tx_mode == TXModeSelect) TRY(tx_mode_probs()); TRY(read_coef_probs()); TRY(read_skip_prob()); if (frame_context.is_inter_predicted()) { TRY(read_inter_mode_probs()); if (frame_context.interpolation_filter == Switchable) TRY(read_interp_filter_probs()); TRY(read_is_inter_probs()); TRY(frame_reference_mode(frame_context)); TRY(frame_reference_mode_probs()); TRY(read_y_mode_probs()); TRY(read_partition_probs()); TRY(mv_probs(frame_context)); } return {}; } DecoderErrorOr Parser::read_tx_mode(FrameContext const& frame_context) { if (frame_context.is_lossless()) { m_tx_mode = Only_4x4; } else { auto tx_mode = TRY_READ(m_bit_stream->read_literal(2)); if (tx_mode == Allow_32x32) tx_mode += TRY_READ(m_bit_stream->read_literal(1)); m_tx_mode = static_cast(tx_mode); } return {}; } DecoderErrorOr Parser::tx_mode_probs() { auto& tx_probs = m_probability_tables->tx_probs(); for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) { for (auto j = 0; j < TX_SIZES - 3; j++) tx_probs[TX_8x8][i][j] = TRY(diff_update_prob(tx_probs[TX_8x8][i][j])); } for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) { for (auto j = 0; j < TX_SIZES - 2; j++) tx_probs[TX_16x16][i][j] = TRY(diff_update_prob(tx_probs[TX_16x16][i][j])); } for (auto i = 0; i < TX_SIZE_CONTEXTS; i++) { for (auto j = 0; j < TX_SIZES - 1; j++) tx_probs[TX_32x32][i][j] = TRY(diff_update_prob(tx_probs[TX_32x32][i][j])); } return {}; } DecoderErrorOr Parser::diff_update_prob(u8 prob) { auto update_prob = TRY_READ(m_bit_stream->read_bool(252)); if (update_prob) { auto delta_prob = TRY(decode_term_subexp()); prob = inv_remap_prob(delta_prob, prob); } return prob; } DecoderErrorOr Parser::decode_term_subexp() { if (TRY_READ(m_bit_stream->read_literal(1)) == 0) return TRY_READ(m_bit_stream->read_literal(4)); if (TRY_READ(m_bit_stream->read_literal(1)) == 0) return TRY_READ(m_bit_stream->read_literal(4)) + 16; if (TRY_READ(m_bit_stream->read_literal(1)) == 0) return TRY_READ(m_bit_stream->read_literal(5)) + 32; auto v = TRY_READ(m_bit_stream->read_literal(7)); if (v < 65) return v + 64; return (v << 1u) - 1 + TRY_READ(m_bit_stream->read_literal(1)); } u8 Parser::inv_remap_prob(u8 delta_prob, u8 prob) { u8 m = prob - 1; auto v = inv_map_table[delta_prob]; if ((m << 1u) <= 255) return 1 + inv_recenter_nonneg(v, m); return 255 - inv_recenter_nonneg(v, 254 - m); } u8 Parser::inv_recenter_nonneg(u8 v, u8 m) { if (v > 2 * m) return v; if (v & 1u) return m - ((v + 1u) >> 1u); return m + (v >> 1u); } DecoderErrorOr Parser::read_coef_probs() { auto max_tx_size = tx_mode_to_biggest_tx_size[m_tx_mode]; for (u8 tx_size = 0; tx_size <= max_tx_size; tx_size++) { auto update_probs = TRY_READ(m_bit_stream->read_literal(1)); if (update_probs == 1) { for (auto i = 0; i < 2; i++) { for (auto j = 0; j < 2; j++) { for (auto k = 0; k < 6; k++) { auto max_l = (k == 0) ? 3 : 6; for (auto l = 0; l < max_l; l++) { for (auto m = 0; m < 3; m++) { auto& prob = m_probability_tables->coef_probs()[tx_size][i][j][k][l][m]; prob = TRY(diff_update_prob(prob)); } } } } } } } return {}; } DecoderErrorOr Parser::read_skip_prob() { for (auto i = 0; i < SKIP_CONTEXTS; i++) m_probability_tables->skip_prob()[i] = TRY(diff_update_prob(m_probability_tables->skip_prob()[i])); return {}; } DecoderErrorOr Parser::read_inter_mode_probs() { for (auto i = 0; i < INTER_MODE_CONTEXTS; i++) { for (auto j = 0; j < INTER_MODES - 1; j++) m_probability_tables->inter_mode_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->inter_mode_probs()[i][j])); } return {}; } DecoderErrorOr Parser::read_interp_filter_probs() { for (auto i = 0; i < INTERP_FILTER_CONTEXTS; i++) { for (auto j = 0; j < SWITCHABLE_FILTERS - 1; j++) m_probability_tables->interp_filter_probs()[i][j] = TRY(diff_update_prob(m_probability_tables->interp_filter_probs()[i][j])); } return {}; } DecoderErrorOr Parser::read_is_inter_probs() { for (auto i = 0; i < IS_INTER_CONTEXTS; i++) m_probability_tables->is_inter_prob()[i] = TRY(diff_update_prob(m_probability_tables->is_inter_prob()[i])); return {}; } DecoderErrorOr Parser::frame_reference_mode(FrameContext& frame_context) { // FIXME: These fields and the ones set in setup_compound_reference_mode should probably be contained by a field, // since they are all used to set the reference frames later in one function (I think). auto compound_reference_allowed = false; for (size_t i = 2; i <= REFS_PER_FRAME; i++) { if (frame_context.reference_frame_sign_biases[i] != frame_context.reference_frame_sign_biases[1]) compound_reference_allowed = true; } if (compound_reference_allowed) { auto non_single_reference = TRY_READ(m_bit_stream->read_literal(1)); if (non_single_reference == 0) { m_reference_mode = SingleReference; } else { auto reference_select = TRY_READ(m_bit_stream->read_literal(1)); if (reference_select == 0) m_reference_mode = CompoundReference; else m_reference_mode = ReferenceModeSelect; setup_compound_reference_mode(frame_context); } } else { m_reference_mode = SingleReference; } return {}; } DecoderErrorOr Parser::frame_reference_mode_probs() { if (m_reference_mode == ReferenceModeSelect) { for (auto i = 0; i < COMP_MODE_CONTEXTS; i++) { auto& comp_mode_prob = m_probability_tables->comp_mode_prob(); comp_mode_prob[i] = TRY(diff_update_prob(comp_mode_prob[i])); } } if (m_reference_mode != CompoundReference) { for (auto i = 0; i < REF_CONTEXTS; i++) { auto& single_ref_prob = m_probability_tables->single_ref_prob(); single_ref_prob[i][0] = TRY(diff_update_prob(single_ref_prob[i][0])); single_ref_prob[i][1] = TRY(diff_update_prob(single_ref_prob[i][1])); } } if (m_reference_mode != SingleReference) { for (auto i = 0; i < REF_CONTEXTS; i++) { auto& comp_ref_prob = m_probability_tables->comp_ref_prob(); comp_ref_prob[i] = TRY(diff_update_prob(comp_ref_prob[i])); } } return {}; } DecoderErrorOr Parser::read_y_mode_probs() { for (auto i = 0; i < BLOCK_SIZE_GROUPS; i++) { for (auto j = 0; j < INTRA_MODES - 1; j++) { auto& y_mode_probs = m_probability_tables->y_mode_probs(); y_mode_probs[i][j] = TRY(diff_update_prob(y_mode_probs[i][j])); } } return {}; } DecoderErrorOr Parser::read_partition_probs() { for (auto i = 0; i < PARTITION_CONTEXTS; i++) { for (auto j = 0; j < PARTITION_TYPES - 1; j++) { auto& partition_probs = m_probability_tables->partition_probs(); partition_probs[i][j] = TRY(diff_update_prob(partition_probs[i][j])); } } return {}; } DecoderErrorOr Parser::mv_probs(FrameContext const& frame_context) { for (auto j = 0; j < MV_JOINTS - 1; j++) { auto& mv_joint_probs = m_probability_tables->mv_joint_probs(); mv_joint_probs[j] = TRY(update_mv_prob(mv_joint_probs[j])); } for (auto i = 0; i < 2; i++) { auto& mv_sign_prob = m_probability_tables->mv_sign_prob(); mv_sign_prob[i] = TRY(update_mv_prob(mv_sign_prob[i])); for (auto j = 0; j < MV_CLASSES - 1; j++) { auto& mv_class_probs = m_probability_tables->mv_class_probs(); mv_class_probs[i][j] = TRY(update_mv_prob(mv_class_probs[i][j])); } auto& mv_class0_bit_prob = m_probability_tables->mv_class0_bit_prob(); mv_class0_bit_prob[i] = TRY(update_mv_prob(mv_class0_bit_prob[i])); for (auto j = 0; j < MV_OFFSET_BITS; j++) { auto& mv_bits_prob = m_probability_tables->mv_bits_prob(); mv_bits_prob[i][j] = TRY(update_mv_prob(mv_bits_prob[i][j])); } } for (auto i = 0; i < 2; i++) { for (auto j = 0; j < CLASS0_SIZE; j++) { for (auto k = 0; k < MV_FR_SIZE - 1; k++) { auto& mv_class0_fr_probs = m_probability_tables->mv_class0_fr_probs(); mv_class0_fr_probs[i][j][k] = TRY(update_mv_prob(mv_class0_fr_probs[i][j][k])); } } for (auto k = 0; k < MV_FR_SIZE - 1; k++) { auto& mv_fr_probs = m_probability_tables->mv_fr_probs(); mv_fr_probs[i][k] = TRY(update_mv_prob(mv_fr_probs[i][k])); } } if (frame_context.high_precision_motion_vectors_allowed) { for (auto i = 0; i < 2; i++) { auto& mv_class0_hp_prob = m_probability_tables->mv_class0_hp_prob(); auto& mv_hp_prob = m_probability_tables->mv_hp_prob(); mv_class0_hp_prob[i] = TRY(update_mv_prob(mv_class0_hp_prob[i])); mv_hp_prob[i] = TRY(update_mv_prob(mv_hp_prob[i])); } } return {}; } DecoderErrorOr Parser::update_mv_prob(u8 prob) { if (TRY_READ(m_bit_stream->read_bool(252))) { return (TRY_READ(m_bit_stream->read_literal(7)) << 1u) | 1u; } return prob; } void Parser::setup_compound_reference_mode(FrameContext& frame_context) { if (frame_context.reference_frame_sign_biases[LastFrame] == frame_context.reference_frame_sign_biases[GoldenFrame]) { m_comp_fixed_ref = AltRefFrame; m_comp_var_ref[0] = LastFrame; m_comp_var_ref[1] = GoldenFrame; } else if (frame_context.reference_frame_sign_biases[LastFrame] == frame_context.reference_frame_sign_biases[AltRefFrame]) { m_comp_fixed_ref = GoldenFrame; m_comp_var_ref[0] = LastFrame; m_comp_var_ref[1] = AltRefFrame; } else { m_comp_fixed_ref = LastFrame; m_comp_var_ref[0] = GoldenFrame; m_comp_var_ref[1] = AltRefFrame; } } DecoderErrorOr Parser::decode_tiles(FrameContext& frame_context) { auto tile_cols = 1 << m_tile_cols_log2; auto tile_rows = 1 << m_tile_rows_log2; clear_above_context(frame_context); for (auto tile_row = 0; tile_row < tile_rows; tile_row++) { for (auto tile_col = 0; tile_col < tile_cols; tile_col++) { auto last_tile = (tile_row == tile_rows - 1) && (tile_col == tile_cols - 1); u64 tile_size; if (last_tile) tile_size = m_bit_stream->bytes_remaining(); else tile_size = TRY_READ(m_bit_stream->read_bits(32)); auto rows_start = get_tile_offset(tile_row, frame_context.rows(), m_tile_rows_log2); auto rows_end = get_tile_offset(tile_row + 1, frame_context.rows(), m_tile_rows_log2); auto columns_start = get_tile_offset(tile_col, frame_context.columns(), m_tile_cols_log2); auto columns_end = get_tile_offset(tile_col + 1, frame_context.columns(), m_tile_cols_log2); auto tile_context = TileContext(frame_context, rows_start, rows_end, columns_start, columns_end); TRY_READ(m_bit_stream->init_bool(tile_size)); TRY(decode_tile(tile_context)); TRY_READ(m_bit_stream->exit_bool()); } } return {}; } template void Parser::clear_context(Vector& context, size_t size) { context.resize_and_keep_capacity(size); __builtin_memset(context.data(), 0, sizeof(T) * size); } template void Parser::clear_context(Vector>& context, size_t outer_size, size_t inner_size) { if (context.size() < outer_size) context.resize(outer_size); for (auto& sub_vector : context) clear_context(sub_vector, inner_size); } void Parser::clear_above_context(FrameContext& frame_context) { for (auto i = 0u; i < m_above_nonzero_context.size(); i++) clear_context(m_above_nonzero_context[i], 2 * frame_context.columns()); clear_context(m_above_seg_pred_context, frame_context.columns()); clear_context(m_above_partition_context, frame_context.superblock_columns() * 8); } u32 Parser::get_tile_offset(u32 tile_num, u32 mis, u32 tile_size_log2) { u32 super_blocks = (mis + 7) >> 3u; u32 offset = ((tile_num * super_blocks) >> tile_size_log2) << 3u; return min(offset, mis); } DecoderErrorOr Parser::decode_tile(TileContext& tile_context) { for (auto row = tile_context.rows_start; row < tile_context.rows_end; row += 8) { clear_left_context(tile_context); for (auto col = tile_context.columns_start; col < tile_context.columns_end; col += 8) { TRY(decode_partition(tile_context, row, col, Block_64x64)); } } return {}; } void Parser::clear_left_context(TileContext& tile_context) { for (auto i = 0u; i < m_left_nonzero_context.size(); i++) clear_context(m_left_nonzero_context[i], 2 * tile_context.frame_context.rows()); clear_context(m_left_seg_pred_context, tile_context.frame_context.rows()); clear_context(m_left_partition_context, tile_context.frame_context.superblock_rows() * 8); } DecoderErrorOr Parser::decode_partition(TileContext& tile_context, u32 row, u32 column, BlockSubsize subsize) { if (row >= tile_context.frame_context.rows() || column >= tile_context.frame_context.columns()) return {}; u8 num_8x8 = num_8x8_blocks_wide_lookup[subsize]; auto half_block_8x8 = num_8x8 >> 1; bool has_rows = (row + half_block_8x8) < tile_context.frame_context.rows(); bool has_cols = (column + half_block_8x8) < tile_context.frame_context.columns(); auto partition = TRY_READ(TreeParser::parse_partition(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, has_rows, has_cols, subsize, num_8x8, m_above_partition_context, m_left_partition_context, row, column, !tile_context.frame_context.is_inter_predicted())); auto child_subsize = subsize_lookup[partition][subsize]; if (child_subsize < Block_8x8 || partition == PartitionNone) { TRY(decode_block(tile_context, row, column, child_subsize)); } else if (partition == PartitionHorizontal) { TRY(decode_block(tile_context, row, column, child_subsize)); if (has_rows) TRY(decode_block(tile_context, row + half_block_8x8, column, child_subsize)); } else if (partition == PartitionVertical) { TRY(decode_block(tile_context, row, column, child_subsize)); if (has_cols) TRY(decode_block(tile_context, row, column + half_block_8x8, child_subsize)); } else { TRY(decode_partition(tile_context, row, column, child_subsize)); TRY(decode_partition(tile_context, row, column + half_block_8x8, child_subsize)); TRY(decode_partition(tile_context, row + half_block_8x8, column, child_subsize)); TRY(decode_partition(tile_context, row + half_block_8x8, column + half_block_8x8, child_subsize)); } if (subsize == Block_8x8 || partition != PartitionSplit) { auto above_context = 15 >> b_width_log2_lookup[child_subsize]; auto left_context = 15 >> b_height_log2_lookup[child_subsize]; for (size_t i = 0; i < num_8x8; i++) { m_above_partition_context[column + i] = above_context; m_left_partition_context[row + i] = left_context; } } return {}; } size_t Parser::get_image_index(FrameContext const& frame_context, u32 row, u32 column) const { VERIFY(row < frame_context.rows() && column < frame_context.columns()); return row * frame_context.columns() + column; } DecoderErrorOr Parser::decode_block(TileContext& tile_context, u32 row, u32 column, BlockSubsize subsize) { auto above_context = row > 0 ? tile_context.frame_block_contexts().at(row - 1, column) : FrameBlockContext(); auto left_context = column > tile_context.columns_start ? tile_context.frame_block_contexts().at(row, column - 1) : FrameBlockContext(); auto block_context = BlockContext(tile_context, row, column, subsize); TRY(mode_info(block_context, above_context, left_context)); auto had_residual_tokens = TRY(residual(block_context, above_context.is_available, left_context.is_available)); if (block_context.is_inter_predicted() && subsize >= Block_8x8 && !had_residual_tokens) block_context.should_skip_residuals = true; for (size_t y = 0; y < block_context.contexts_view.height(); y++) { for (size_t x = 0; x < block_context.contexts_view.width(); x++) { auto sub_block_context = FrameBlockContext { true, block_context.should_skip_residuals, block_context.tx_size, block_context.y_prediction_mode(), block_context.sub_block_prediction_modes, block_context.interpolation_filter, block_context.reference_frame_types, block_context.sub_block_motion_vectors, block_context.segment_id }; block_context.contexts_view.at(y, x) = sub_block_context; VERIFY(block_context.frame_block_contexts().at(row + y, column + x).tx_size == sub_block_context.tx_size); } } return {}; } DecoderErrorOr Parser::mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { if (block_context.frame_context.is_inter_predicted()) TRY(inter_frame_mode_info(block_context, above_context, left_context)); else TRY(intra_frame_mode_info(block_context, above_context, left_context)); return {}; } DecoderErrorOr Parser::intra_frame_mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { block_context.reference_frame_types = { ReferenceFrameType::None, ReferenceFrameType::None }; VERIFY(!block_context.is_inter_predicted()); TRY(set_intra_segment_id(block_context)); block_context.should_skip_residuals = TRY(read_should_skip_residuals(block_context, above_context, left_context)); block_context.tx_size = TRY(read_tx_size(block_context, above_context, left_context, true)); // FIXME: This if statement is also present in parse_default_intra_mode. The selection of parameters for // the probability table lookup should be inlined here. if (block_context.size >= Block_8x8) { auto mode = TRY_READ(TreeParser::parse_default_intra_mode(*m_bit_stream, *m_probability_tables, block_context.size, above_context, left_context, block_context.sub_block_prediction_modes, 0, 0)); for (auto& block_sub_mode : block_context.sub_block_prediction_modes) block_sub_mode = mode; } else { auto size_in_4x4_blocks = block_context.get_size_in_4x4_blocks(); for (auto idy = 0; idy < 2; idy += size_in_4x4_blocks.height()) { for (auto idx = 0; idx < 2; idx += size_in_4x4_blocks.width()) { auto sub_mode = TRY_READ(TreeParser::parse_default_intra_mode(*m_bit_stream, *m_probability_tables, block_context.size, above_context, left_context, block_context.sub_block_prediction_modes, idx, idy)); for (auto y = 0; y < size_in_4x4_blocks.height(); y++) { for (auto x = 0; x < size_in_4x4_blocks.width(); x++) { auto index = (idy + y) * 2 + idx + x; block_context.sub_block_prediction_modes[index] = sub_mode; } } } } } block_context.uv_prediction_mode = TRY_READ(TreeParser::parse_default_uv_mode(*m_bit_stream, *m_probability_tables, block_context.y_prediction_mode())); return {}; } DecoderErrorOr Parser::set_intra_segment_id(BlockContext& block_context) { if (m_segmentation_enabled && m_segmentation_update_map) block_context.segment_id = TRY_READ(TreeParser::parse_segment_id(*m_bit_stream, m_segmentation_tree_probs)); else block_context.segment_id = 0; return {}; } DecoderErrorOr Parser::read_should_skip_residuals(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { if (seg_feature_active(block_context, SEG_LVL_SKIP)) return true; return TRY_READ(TreeParser::parse_skip(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); } bool Parser::seg_feature_active(BlockContext const& block_context, u8 feature) { return m_segmentation_enabled && m_feature_enabled[block_context.segment_id][feature]; } DecoderErrorOr Parser::read_tx_size(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context, bool allow_select) { auto max_tx_size = max_txsize_lookup[block_context.size]; if (allow_select && m_tx_mode == TXModeSelect && block_context.size >= Block_8x8) return (TRY_READ(TreeParser::parse_tx_size(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, max_tx_size, above_context, left_context))); return min(max_tx_size, tx_mode_to_biggest_tx_size[m_tx_mode]); } DecoderErrorOr Parser::inter_frame_mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { TRY(set_inter_segment_id(block_context)); block_context.should_skip_residuals = TRY(read_should_skip_residuals(block_context, above_context, left_context)); auto is_inter = TRY(read_is_inter(block_context, above_context, left_context)); block_context.tx_size = TRY(read_tx_size(block_context, above_context, left_context, !block_context.should_skip_residuals || !is_inter)); if (is_inter) { TRY(inter_block_mode_info(block_context, above_context, left_context)); } else { TRY(intra_block_mode_info(block_context)); } return {}; } DecoderErrorOr Parser::set_inter_segment_id(BlockContext& block_context) { if (!m_segmentation_enabled) { block_context.segment_id = 0; return {}; } auto predicted_segment_id = get_segment_id(block_context); if (!m_segmentation_update_map) { block_context.segment_id = predicted_segment_id; return {}; } if (!m_segmentation_temporal_update) { block_context.segment_id = TRY_READ(TreeParser::parse_segment_id(*m_bit_stream, m_segmentation_tree_probs)); return {}; } auto seg_id_predicted = TRY_READ(TreeParser::parse_segment_id_predicted(*m_bit_stream, m_segmentation_pred_prob, m_left_seg_pred_context[block_context.row], m_above_seg_pred_context[block_context.column])); if (seg_id_predicted) block_context.segment_id = predicted_segment_id; else block_context.segment_id = TRY_READ(TreeParser::parse_segment_id(*m_bit_stream, m_segmentation_tree_probs)); for (size_t i = 0; i < num_8x8_blocks_wide_lookup[block_context.size]; i++) { auto index = block_context.column + i; // (7.4.1) AboveSegPredContext[ i ] only needs to be set to 0 for i = 0..MiCols-1. if (index < m_above_seg_pred_context.size()) m_above_seg_pred_context[index] = seg_id_predicted; } for (size_t i = 0; i < num_8x8_blocks_high_lookup[block_context.size]; i++) { auto index = block_context.row + i; // (7.4.1) LeftSegPredContext[ i ] only needs to be set to 0 for i = 0..MiRows-1. if (index < m_above_seg_pred_context.size()) m_left_seg_pred_context[block_context.row + i] = seg_id_predicted; } return {}; } u8 Parser::get_segment_id(BlockContext const& block_context) { auto bw = num_8x8_blocks_wide_lookup[block_context.size]; auto bh = num_8x8_blocks_high_lookup[block_context.size]; auto xmis = min(block_context.frame_context.columns() - block_context.column, (u32)bw); auto ymis = min(block_context.frame_context.rows() - block_context.row, (u32)bh); u8 segment = 7; for (size_t y = 0; y < ymis; y++) { for (size_t x = 0; x < xmis; x++) { segment = min(segment, m_previous_block_contexts.index_at(block_context.row + y, block_context.column + x)); } } return segment; } DecoderErrorOr Parser::read_is_inter(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { if (seg_feature_active(block_context, SEG_LVL_REF_FRAME)) return m_feature_data[block_context.segment_id][SEG_LVL_REF_FRAME] != IntraFrame; return TRY_READ(TreeParser::parse_block_is_inter_predicted(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); } DecoderErrorOr Parser::intra_block_mode_info(BlockContext& block_context) { block_context.reference_frame_types = { ReferenceFrameType::None, ReferenceFrameType::None }; VERIFY(!block_context.is_inter_predicted()); auto& sub_modes = block_context.sub_block_prediction_modes; if (block_context.size >= Block_8x8) { auto mode = TRY_READ(TreeParser::parse_intra_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, block_context.size)); for (auto& block_sub_mode : sub_modes) block_sub_mode = mode; } else { auto size_in_4x4_blocks = block_context.get_size_in_4x4_blocks(); for (auto idy = 0; idy < 2; idy += size_in_4x4_blocks.height()) { for (auto idx = 0; idx < 2; idx += size_in_4x4_blocks.width()) { auto sub_intra_mode = TRY_READ(TreeParser::parse_sub_intra_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter)); for (auto y = 0; y < size_in_4x4_blocks.height(); y++) { for (auto x = 0; x < size_in_4x4_blocks.width(); x++) sub_modes[(idy + y) * 2 + idx + x] = sub_intra_mode; } } } } block_context.uv_prediction_mode = TRY_READ(TreeParser::parse_uv_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, block_context.y_prediction_mode())); return {}; } DecoderErrorOr Parser::inter_block_mode_info(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { TRY(read_ref_frames(block_context, above_context, left_context)); VERIFY(block_context.is_inter_predicted()); for (auto j = 0; j < 2; j++) { if (block_context.reference_frame_types[j] > IntraFrame) { find_mv_refs(block_context, block_context.reference_frame_types[j], -1); find_best_ref_mvs(block_context, j); } } if (seg_feature_active(block_context, SEG_LVL_SKIP)) { block_context.y_prediction_mode() = PredictionMode::ZeroMv; } else if (block_context.size >= Block_8x8) { block_context.y_prediction_mode() = TRY_READ(TreeParser::parse_inter_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, m_mode_context[block_context.reference_frame_types[0]])); } if (block_context.frame_context.interpolation_filter == Switchable) block_context.interpolation_filter = TRY_READ(TreeParser::parse_interpolation_filter(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); else block_context.interpolation_filter = block_context.frame_context.interpolation_filter; if (block_context.size < Block_8x8) { auto size_in_4x4_blocks = block_context.get_size_in_4x4_blocks(); for (auto idy = 0; idy < 2; idy += size_in_4x4_blocks.height()) { for (auto idx = 0; idx < 2; idx += size_in_4x4_blocks.width()) { block_context.y_prediction_mode() = TRY_READ(TreeParser::parse_inter_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, m_mode_context[block_context.reference_frame_types[0]])); if (block_context.y_prediction_mode() == PredictionMode::NearestMv || block_context.y_prediction_mode() == PredictionMode::NearMv) { for (auto j = 0; j < 1 + block_context.is_compound(); j++) append_sub8x8_mvs(block_context, idy * 2 + idx, j); } auto new_motion_vector_pair = TRY(assign_mv(block_context)); for (auto y = 0; y < size_in_4x4_blocks.height(); y++) { for (auto x = 0; x < size_in_4x4_blocks.width(); x++) { auto sub_block_index = (idy + y) * 2 + idx + x; block_context.sub_block_motion_vectors[sub_block_index] = new_motion_vector_pair; } } } } return {}; } auto new_motion_vector_pair = TRY(assign_mv(block_context)); for (auto block = 0; block < 4; block++) block_context.sub_block_motion_vectors[block] = new_motion_vector_pair; return {}; } DecoderErrorOr Parser::read_ref_frames(BlockContext& block_context, FrameBlockContext above_context, FrameBlockContext left_context) { if (seg_feature_active(block_context, SEG_LVL_REF_FRAME)) { block_context.reference_frame_types = { static_cast(m_feature_data[block_context.segment_id][SEG_LVL_REF_FRAME]), None }; return {}; } ReferenceMode comp_mode; if (m_reference_mode == ReferenceModeSelect) comp_mode = TRY_READ(TreeParser::parse_comp_mode(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, m_comp_fixed_ref, above_context, left_context)); else comp_mode = m_reference_mode; if (comp_mode == CompoundReference) { // FIXME: Make reference frame pairs be indexed by an enum of FixedReference or VariableReference? auto fixed_reference_index = block_context.frame_context.reference_frame_sign_biases[m_comp_fixed_ref]; auto variable_reference_index = !fixed_reference_index; // FIXME: Create an enum for compound frame references using names Primary and Secondary. auto comp_ref = TRY_READ(TreeParser::parse_comp_ref(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, m_comp_fixed_ref, m_comp_var_ref, variable_reference_index, above_context, left_context)); block_context.reference_frame_types[fixed_reference_index] = m_comp_fixed_ref; block_context.reference_frame_types[variable_reference_index] = m_comp_var_ref[comp_ref]; return {}; } // FIXME: Maybe consolidate this into a tree. Context is different between part 1 and 2 but still, it would look nice here. auto single_ref_p1 = TRY_READ(TreeParser::parse_single_ref_part_1(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); if (single_ref_p1) { auto single_ref_p2 = TRY_READ(TreeParser::parse_single_ref_part_2(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, above_context, left_context)); block_context.reference_frame_types[0] = single_ref_p2 ? AltRefFrame : GoldenFrame; } else { block_context.reference_frame_types[0] = LastFrame; } block_context.reference_frame_types[1] = None; return {}; } DecoderErrorOr Parser::assign_mv(BlockContext const& block_context) { MotionVectorPair result; for (auto i = 0; i < 1 + block_context.is_compound(); i++) { switch (block_context.y_prediction_mode()) { case PredictionMode::NewMv: result[i] = TRY(read_mv(block_context, i)); break; case PredictionMode::NearestMv: result[i] = m_nearest_mv[i]; break; case PredictionMode::NearMv: result[i] = m_near_mv[i]; break; default: result[i] = {}; break; } } return result; } DecoderErrorOr Parser::read_mv(BlockContext const& block_context, u8 ref) { m_use_hp = block_context.frame_context.high_precision_motion_vectors_allowed && use_mv_hp(m_best_mv[ref]); MotionVector diff_mv; auto mv_joint = TRY_READ(TreeParser::parse_motion_vector_joint(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter)); if (mv_joint == MvJointHzvnz || mv_joint == MvJointHnzvnz) diff_mv.set_row(TRY(read_mv_component(0))); if (mv_joint == MvJointHnzvz || mv_joint == MvJointHnzvnz) diff_mv.set_column(TRY(read_mv_component(1))); return m_best_mv[ref] + diff_mv; } DecoderErrorOr Parser::read_mv_component(u8 component) { auto mv_sign = TRY_READ(TreeParser::parse_motion_vector_sign(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component)); auto mv_class = TRY_READ(TreeParser::parse_motion_vector_class(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component)); u32 magnitude; if (mv_class == MvClass0) { auto mv_class0_bit = TRY_READ(TreeParser::parse_motion_vector_class0_bit(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component)); auto mv_class0_fr = TRY_READ(TreeParser::parse_motion_vector_class0_fr(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component, mv_class0_bit)); auto mv_class0_hp = TRY_READ(TreeParser::parse_motion_vector_class0_hp(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component, m_use_hp)); magnitude = ((mv_class0_bit << 3) | (mv_class0_fr << 1) | mv_class0_hp) + 1; } else { u32 bits = 0; for (u8 i = 0; i < mv_class; i++) { auto mv_bit = TRY_READ(TreeParser::parse_motion_vector_bit(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component, i)); bits |= mv_bit << i; } magnitude = CLASS0_SIZE << (mv_class + 2); auto mv_fr = TRY_READ(TreeParser::parse_motion_vector_fr(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component)); auto mv_hp = TRY_READ(TreeParser::parse_motion_vector_hp(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, component, m_use_hp)); magnitude += ((bits << 3) | (mv_fr << 1) | mv_hp) + 1; } return (mv_sign ? -1 : 1) * static_cast(magnitude); } Gfx::Point Parser::get_decoded_point_for_plane(FrameContext const& frame_context, u32 column, u32 row, u8 plane) { (void)frame_context; if (plane == 0) return { column * 8, row * 8 }; return { (column * 8) >> frame_context.color_config.subsampling_x, (row * 8) >> frame_context.color_config.subsampling_y }; } Gfx::Size Parser::get_decoded_size_for_plane(FrameContext const& frame_context, u8 plane) { auto point = get_decoded_point_for_plane(frame_context, frame_context.columns(), frame_context.rows(), plane); return { point.x(), point.y() }; } static BlockSubsize get_plane_block_size(bool subsampling_x, bool subsampling_y, u32 subsize, u8 plane) { auto sub_x = (plane > 0) ? subsampling_x : 0; auto sub_y = (plane > 0) ? subsampling_y : 0; return ss_size_lookup[subsize][sub_x][sub_y]; } static TXSize get_uv_tx_size(bool subsampling_x, bool subsampling_y, TXSize tx_size, BlockSubsize size) { if (size < Block_8x8) return TX_4x4; return min(tx_size, max_txsize_lookup[get_plane_block_size(subsampling_x, subsampling_y, size, 1)]); } DecoderErrorOr Parser::residual(BlockContext& block_context, bool has_block_above, bool has_block_left) { bool had_residual_tokens = false; auto block_size = block_context.size < Block_8x8 ? Block_8x8 : block_context.size; for (u8 plane = 0; plane < 3; plane++) { auto tx_size = (plane > 0) ? get_uv_tx_size(block_context.frame_context.color_config.subsampling_x, block_context.frame_context.color_config.subsampling_y, block_context.tx_size, block_context.size) : block_context.tx_size; auto step = 1 << tx_size; auto plane_size = get_plane_block_size(block_context.frame_context.color_config.subsampling_x, block_context.frame_context.color_config.subsampling_y, block_size, plane); auto num_4x4_w = num_4x4_blocks_wide_lookup[plane_size]; auto num_4x4_h = num_4x4_blocks_high_lookup[plane_size]; auto sub_x = (plane > 0) ? block_context.frame_context.color_config.subsampling_x : 0; auto sub_y = (plane > 0) ? block_context.frame_context.color_config.subsampling_y : 0; auto base_x = (block_context.column * 8) >> sub_x; auto base_y = (block_context.row * 8) >> sub_y; if (block_context.is_inter_predicted()) { if (block_context.size < Block_8x8) { for (auto y = 0; y < num_4x4_h; y++) { for (auto x = 0; x < num_4x4_w; x++) { TRY(m_decoder.predict_inter(plane, block_context, base_x + (4 * x), base_y + (4 * y), 4, 4, (y * num_4x4_w) + x)); } } } else { TRY(m_decoder.predict_inter(plane, block_context, base_x, base_y, num_4x4_w * 4, num_4x4_h * 4, 0)); } } auto max_x = (block_context.frame_context.columns() * 8) >> sub_x; auto max_y = (block_context.frame_context.rows() * 8) >> sub_y; auto block_index = 0; for (auto y = 0; y < num_4x4_h; y += step) { for (auto x = 0; x < num_4x4_w; x += step) { auto start_x = base_x + (4 * x); auto start_y = base_y + (4 * y); auto non_zero = false; if (start_x < max_x && start_y < max_y) { if (!block_context.is_inter_predicted()) TRY(m_decoder.predict_intra(plane, block_context, start_x, start_y, has_block_left || x > 0, has_block_above || y > 0, (x + step) < num_4x4_w, tx_size, block_index)); if (!block_context.should_skip_residuals) { non_zero = TRY(tokens(block_context, plane, start_x, start_y, tx_size, block_index)); had_residual_tokens = had_residual_tokens || non_zero; TRY(m_decoder.reconstruct(plane, block_context, start_x, start_y, tx_size)); } } auto& above_sub_context = m_above_nonzero_context[plane]; auto above_sub_context_index = start_x >> 2; auto above_sub_context_end = min(above_sub_context_index + step, above_sub_context.size()); for (; above_sub_context_index < above_sub_context_end; above_sub_context_index++) above_sub_context[above_sub_context_index] = non_zero; auto& left_sub_context = m_left_nonzero_context[plane]; auto left_sub_context_index = start_y >> 2; auto left_sub_context_end = min(left_sub_context_index + step, left_sub_context.size()); for (; left_sub_context_index < left_sub_context_end; left_sub_context_index++) left_sub_context[left_sub_context_index] = non_zero; block_index++; } } } return had_residual_tokens; } DecoderErrorOr Parser::tokens(BlockContext& block_context, size_t plane, u32 start_x, u32 start_y, TXSize tx_size, u32 block_index) { u32 segment_eob = 16 << (tx_size << 1); auto const* scan = get_scan(block_context, plane, tx_size, block_index); auto check_eob = true; u32 c = 0; for (; c < segment_eob; c++) { auto pos = scan[c]; auto band = (tx_size == TX_4x4) ? coefband_4x4[c] : coefband_8x8plus[c]; auto tokens_context = TreeParser::get_tokens_context(block_context.frame_context.color_config.subsampling_x, block_context.frame_context.color_config.subsampling_y, block_context.frame_context.rows(), block_context.frame_context.columns(), m_above_nonzero_context, m_left_nonzero_context, m_token_cache, tx_size, m_tx_type, plane, start_x, start_y, pos, block_context.is_inter_predicted(), band, c); if (check_eob) { auto more_coefs = TRY_READ(TreeParser::parse_more_coefficients(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, tokens_context)); if (!more_coefs) break; } auto token = TRY_READ(TreeParser::parse_token(*m_bit_stream, *m_probability_tables, *m_syntax_element_counter, tokens_context)); m_token_cache[pos] = energy_class[token]; if (token == ZeroToken) { m_tokens[pos] = 0; check_eob = false; } else { i32 coef = TRY(read_coef(block_context.frame_context.color_config.bit_depth, token)); bool sign_bit = TRY_READ(m_bit_stream->read_literal(1)); m_tokens[pos] = sign_bit ? -coef : coef; check_eob = true; } } for (u32 i = c; i < segment_eob; i++) m_tokens[scan[i]] = 0; return c > 0; } u32 const* Parser::get_scan(BlockContext const& block_context, size_t plane, TXSize tx_size, u32 block_index) { if (plane > 0 || tx_size == TX_32x32) { m_tx_type = DCT_DCT; } else if (tx_size == TX_4x4) { if (block_context.frame_context.is_lossless() || block_context.is_inter_predicted()) m_tx_type = DCT_DCT; else m_tx_type = mode_to_txfm_map[to_underlying(block_context.size < Block_8x8 ? block_context.sub_block_prediction_modes[block_index] : block_context.y_prediction_mode())]; } else { m_tx_type = mode_to_txfm_map[to_underlying(block_context.y_prediction_mode())]; } if (tx_size == TX_4x4) { if (m_tx_type == ADST_DCT) return row_scan_4x4; if (m_tx_type == DCT_ADST) return col_scan_4x4; return default_scan_4x4; } if (tx_size == TX_8x8) { if (m_tx_type == ADST_DCT) return row_scan_8x8; if (m_tx_type == DCT_ADST) return col_scan_8x8; return default_scan_8x8; } if (tx_size == TX_16x16) { if (m_tx_type == ADST_DCT) return row_scan_16x16; if (m_tx_type == DCT_ADST) return col_scan_16x16; return default_scan_16x16; } return default_scan_32x32; } DecoderErrorOr Parser::read_coef(u8 bit_depth, Token token) { auto cat = extra_bits[token][0]; auto num_extra = extra_bits[token][1]; u32 coef = extra_bits[token][2]; if (token == DctValCat6) { for (size_t e = 0; e < (u8)(bit_depth - 8); e++) { auto high_bit = TRY_READ(m_bit_stream->read_bool(255)); coef += high_bit << (5 + bit_depth - e); } } for (size_t e = 0; e < num_extra; e++) { auto coef_bit = TRY_READ(m_bit_stream->read_bool(cat_probs[cat][e])); coef += coef_bit << (num_extra - 1 - e); } return coef; } static bool is_inside(TileContext const& tile_context, MotionVector vector) { if (vector.row() < 0) return false; if (vector.column() < 0) return false; u32 row_positive = vector.row(); u32 column_positive = vector.column(); return row_positive < tile_context.frame_context.rows() && column_positive >= tile_context.columns_start && column_positive < tile_context.columns_end; } void Parser::add_mv_ref_list(u8 ref_list) { if (m_ref_mv_count >= 2) return; if (m_ref_mv_count > 0 && m_candidate_mv[ref_list] == m_ref_list_mv[0]) return; m_ref_list_mv[m_ref_mv_count] = m_candidate_mv[ref_list]; m_ref_mv_count++; } void Parser::get_block_mv(BlockContext const& block_context, MotionVector candidate_vector, u8 ref_list, bool use_prev) { if (use_prev) { auto const& prev_context = m_previous_block_contexts.at(candidate_vector.row(), candidate_vector.column()); m_candidate_mv[ref_list] = prev_context.primary_motion_vector_pair[ref_list]; m_candidate_frame[ref_list] = prev_context.ref_frames[ref_list]; } else { auto const& current_context = block_context.frame_block_contexts().at(candidate_vector.row(), candidate_vector.column()); m_candidate_mv[ref_list] = current_context.primary_motion_vector_pair()[ref_list]; m_candidate_frame[ref_list] = current_context.ref_frames[ref_list]; } } void Parser::if_same_ref_frame_add_mv(BlockContext const& block_context, MotionVector candidate_vector, ReferenceFrameType ref_frame, bool use_prev) { for (auto ref_list = 0u; ref_list < 2; ref_list++) { get_block_mv(block_context, candidate_vector, ref_list, use_prev); if (m_candidate_frame[ref_list] == ref_frame) { add_mv_ref_list(ref_list); return; } } } void Parser::scale_mv(FrameContext const& frame_context, u8 ref_list, ReferenceFrameType ref_frame) { auto candidate_frame = m_candidate_frame[ref_list]; if (frame_context.reference_frame_sign_biases[candidate_frame] != frame_context.reference_frame_sign_biases[ref_frame]) m_candidate_mv[ref_list] *= -1; } void Parser::if_diff_ref_frame_add_mv(BlockContext const& block_context, MotionVector candidate_vector, ReferenceFrameType ref_frame, bool use_prev) { for (auto ref_list = 0u; ref_list < 2; ref_list++) get_block_mv(block_context, candidate_vector, ref_list, use_prev); auto mvs_are_same = m_candidate_mv[0] == m_candidate_mv[1]; if (m_candidate_frame[0] > ReferenceFrameType::IntraFrame && m_candidate_frame[0] != ref_frame) { scale_mv(block_context.frame_context, 0, ref_frame); add_mv_ref_list(0); } if (m_candidate_frame[1] > ReferenceFrameType::IntraFrame && m_candidate_frame[1] != ref_frame && !mvs_are_same) { scale_mv(block_context.frame_context, 1, ref_frame); add_mv_ref_list(1); } } MotionVector Parser::clamp_mv(BlockContext const& block_context, MotionVector vector, i32 border) { i32 blocks_high = num_8x8_blocks_high_lookup[block_context.size]; // Casts must be done here to prevent subtraction underflow from wrapping the values. i32 mb_to_top_edge = -8 * (static_cast(block_context.row) * MI_SIZE); i32 mb_to_bottom_edge = 8 * ((static_cast(block_context.frame_context.rows()) - blocks_high - static_cast(block_context.row)) * MI_SIZE); i32 blocks_wide = num_8x8_blocks_wide_lookup[block_context.size]; i32 mb_to_left_edge = -8 * (static_cast(block_context.column) * MI_SIZE); i32 mb_to_right_edge = 8 * ((static_cast(block_context.frame_context.columns()) - blocks_wide - static_cast(block_context.column)) * MI_SIZE); return { clip_3(mb_to_top_edge - border, mb_to_bottom_edge + border, vector.row()), clip_3(mb_to_left_edge - border, mb_to_right_edge + border, vector.column()) }; } void Parser::clamp_mv_ref(BlockContext const& block_context, u8 i) { // FIXME: This seems silly and should probably just be written inline in the one place it's used. MotionVector& vector = m_ref_list_mv[i]; vector = clamp_mv(block_context, vector, MV_BORDER); } // 6.5.1 Find MV refs syntax void Parser::find_mv_refs(BlockContext& block_context, ReferenceFrameType reference_frame, i32 block) { m_ref_mv_count = 0; bool different_ref_found = false; u8 context_counter = 0; m_ref_list_mv[0] = {}; m_ref_list_mv[1] = {}; MotionVector base_coordinates = MotionVector(block_context.row, block_context.column); for (auto i = 0u; i < 2; i++) { auto offset_vector = mv_ref_blocks[block_context.size][i]; auto candidate = base_coordinates + offset_vector; if (is_inside(block_context.tile_context, candidate)) { different_ref_found = true; auto context = block_context.frame_block_contexts().at(candidate.row(), candidate.column()); context_counter += mode_2_counter[to_underlying(context.y_mode)]; for (auto ref_list = 0u; ref_list < 2; ref_list++) { if (context.ref_frames[ref_list] == reference_frame) { // This section up until add_mv_ref_list() is defined in spec as get_sub_block_mv(). constexpr u8 idx_n_column_to_subblock[4][2] = { { 1, 2 }, { 1, 3 }, { 3, 2 }, { 3, 3 } }; auto index = block >= 0 ? idx_n_column_to_subblock[block][offset_vector.column() == 0] : 3; m_candidate_mv[ref_list] = context.sub_block_motion_vectors[index][ref_list]; add_mv_ref_list(ref_list); break; } } } } for (auto i = 2u; i < MVREF_NEIGHBOURS; i++) { MotionVector candidate = base_coordinates + mv_ref_blocks[block_context.size][i]; if (is_inside(block_context.tile_context, candidate)) { different_ref_found = true; if_same_ref_frame_add_mv(block_context, candidate, reference_frame, false); } } if (m_use_prev_frame_mvs) if_same_ref_frame_add_mv(block_context, base_coordinates, reference_frame, true); if (different_ref_found) { for (auto i = 0u; i < MVREF_NEIGHBOURS; i++) { MotionVector candidate = base_coordinates + mv_ref_blocks[block_context.size][i]; if (is_inside(block_context.tile_context, candidate)) if_diff_ref_frame_add_mv(block_context, candidate, reference_frame, false); } } if (m_use_prev_frame_mvs) if_diff_ref_frame_add_mv(block_context, base_coordinates, reference_frame, true); m_mode_context[reference_frame] = counter_to_context[context_counter]; for (auto i = 0u; i < MAX_MV_REF_CANDIDATES; i++) clamp_mv_ref(block_context, i); } bool Parser::use_mv_hp(MotionVector const& vector) { return (abs(vector.row()) >> 3) < COMPANDED_MVREF_THRESH && (abs(vector.column()) >> 3) < COMPANDED_MVREF_THRESH; } void Parser::find_best_ref_mvs(BlockContext& block_context, u8 ref_list) { for (auto i = 0u; i < MAX_MV_REF_CANDIDATES; i++) { auto delta = m_ref_list_mv[i]; auto delta_row = delta.row(); auto delta_column = delta.column(); if (!block_context.frame_context.high_precision_motion_vectors_allowed || !use_mv_hp(delta)) { if (delta_row & 1) delta_row += delta_row > 0 ? -1 : 1; if (delta_column & 1) delta_column += delta_column > 0 ? -1 : 1; } delta = { delta_row, delta_column }; m_ref_list_mv[i] = clamp_mv(block_context, delta, (BORDERINPIXELS - INTERP_EXTEND) << 3); } m_nearest_mv[ref_list] = m_ref_list_mv[0]; m_near_mv[ref_list] = m_ref_list_mv[1]; m_best_mv[ref_list] = m_ref_list_mv[0]; } void Parser::append_sub8x8_mvs(BlockContext& block_context, i32 block, u8 ref_list) { MotionVector sub_8x8_mvs[2]; find_mv_refs(block_context, block_context.reference_frame_types[ref_list], block); auto destination_index = 0; if (block == 0) { for (auto i = 0u; i < 2; i++) sub_8x8_mvs[destination_index++] = m_ref_list_mv[i]; } else if (block <= 2) { sub_8x8_mvs[destination_index++] = block_context.sub_block_motion_vectors[0][ref_list]; } else { sub_8x8_mvs[destination_index++] = block_context.sub_block_motion_vectors[2][ref_list]; for (auto index = 1; index >= 0 && destination_index < 2; index--) { auto block_vector = block_context.sub_block_motion_vectors[index][ref_list]; if (block_vector != sub_8x8_mvs[0]) sub_8x8_mvs[destination_index++] = block_vector; } } for (auto n = 0u; n < 2 && destination_index < 2; n++) { auto ref_list_vector = m_ref_list_mv[n]; if (ref_list_vector != sub_8x8_mvs[0]) sub_8x8_mvs[destination_index++] = ref_list_vector; } if (destination_index < 2) sub_8x8_mvs[destination_index++] = {}; m_nearest_mv[ref_list] = sub_8x8_mvs[0]; m_near_mv[ref_list] = sub_8x8_mvs[1]; } }