/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include namespace Gfx { void Path::close() { if (m_segments.size() <= 1) return; invalidate_split_lines(); auto& last_point = m_segments.last().point; for (ssize_t i = m_segments.size() - 1; i >= 0; --i) { auto& segment = m_segments[i]; if (segment.type == Segment::Type::MoveTo) { if (last_point == segment.point) return; m_segments.append({ Segment::Type::LineTo, segment.point }); return; } } } String Path::to_string() const { StringBuilder builder; builder.append("Path { "); for (auto& segment : m_segments) { switch (segment.type) { case Segment::Type::MoveTo: builder.append("MoveTo"); break; case Segment::Type::LineTo: builder.append("LineTo"); break; case Segment::Type::QuadraticBezierCurveTo: builder.append("QuadraticBezierCurveTo"); break; case Segment::Type::Invalid: builder.append("Invalid"); break; } builder.append('('); builder.append(segment.point.to_string()); if (segment.through.has_value()) { builder.append(", "); builder.append(segment.through.value().to_string()); } builder.append(')'); builder.append(' '); } builder.append("}"); return builder.to_string(); } void Path::segmentize_path() { Vector segments; auto add_line = [&](const auto& p0, const auto& p1) { float ymax = p0.y(), ymin = p1.y(), x_of_ymin = p1.x(), x_of_ymax = p0.x(); auto slope = p0.x() == p1.x() ? 0 : ((float)(p0.y() - p1.y())) / ((float)(p0.x() - p1.x())); if (p0.y() < p1.y()) { ymin = ymax; ymax = p1.y(); x_of_ymax = x_of_ymin; x_of_ymin = p0.x(); } segments.append({ Point(p0.x(), p0.y()), Point(p1.x(), p1.y()), slope == 0 ? 0 : 1 / slope, x_of_ymin, ymax, ymin, x_of_ymax }); }; FloatPoint cursor { 0, 0 }; for (auto& segment : m_segments) { switch (segment.type) { case Segment::Type::MoveTo: cursor = segment.point; break; case Segment::Type::LineTo: { add_line(cursor, segment.point); cursor = segment.point; break; } case Segment::Type::QuadraticBezierCurveTo: { auto& control = segment.through.value(); Painter::for_each_line_segment_on_bezier_curve(control, cursor, segment.point, [&](const FloatPoint& p0, const FloatPoint& p1) { add_line(Point(p0.x(), p0.y()), Point(p1.x(), p1.y())); }); cursor = segment.point; break; } case Segment::Type::Invalid: ASSERT_NOT_REACHED(); break; } } // sort segments by ymax quick_sort(segments, [](const auto& line0, const auto& line1) { return line1.maximum_y < line0.maximum_y; }); m_split_lines = move(segments); } Vector Path::split_lines(Path::ShapeKind kind) { if (m_split_lines.has_value()) { const auto& lines = m_split_lines.value(); if (kind == Complex) return lines; Vector segments; for (auto& line : lines) { if (is_part_of_closed_polygon(line.from, line.to)) segments.append(line); } return move(segments); } segmentize_path(); ASSERT(m_split_lines.has_value()); return split_lines(kind); } void Path::generate_path_graph() { // Generate a (possibly) disconnected cyclic directed graph // of the line segments in the path. // This graph will be used to determine whether a line should // be considered as part of an edge for the shape // FIXME: This will not chop lines up, so we might still have some // filling artifacts after this, as a line might pass over an edge // but be itself a part of _another_ polygon. HashMap> graph; m_graph_node_map = move(graph); const auto& lines = split_lines(); if (!lines.size()) return; // now use scanline to find intersecting lines auto scanline = lines.first().maximum_y; auto last_line = lines.last().minimum_y; Vector active_list; for (auto& line : lines) { if (line.maximum_y < scanline) break; active_list.append(line); } while (scanline >= last_line) { if (active_list.size() > 1) { quick_sort(active_list, [](const auto& line0, const auto& line1) { return line1.x < line0.x; }); // for every two lines next to each other in the active list // figure out if they intersect, if they do, store // the right line as the child of the left line // in the path graph for (size_t i = 1; i < active_list.size(); ++i) { auto& left_line = active_list[i - 1]; auto& right_line = active_list[i]; auto left_hash = hash_line(left_line.from, left_line.to); auto right_hash = hash_line(right_line.from, right_line.to); auto maybe_left_entry = m_graph_node_map.value().get(left_hash); auto maybe_right_entry = m_graph_node_map.value().get(right_hash); if (!maybe_left_entry.has_value()) { auto left_entry = make(left_hash, left_line); m_graph_node_map.value().set(left_hash, move(left_entry)); maybe_left_entry = m_graph_node_map.value().get(left_hash); } if (!maybe_right_entry.has_value()) { auto right_entry = make(right_hash, right_line); m_graph_node_map.value().set(right_hash, move(right_entry)); maybe_right_entry = m_graph_node_map.value().get(right_hash); } // check all four sides for possible intersection if (((int)fabs(left_line.x - right_line.x)) <= 1 || ((int)fabs(left_line.x - right_line.x + left_line.inverse_slope)) <= 1 || ((int)fabs(left_line.x - right_line.x + right_line.inverse_slope)) <= 1 || ((int)fabs(left_line.x - right_line.x + +right_line.inverse_slope + left_line.inverse_slope)) <= 1) { const_cast(maybe_left_entry.value())->children.append(maybe_right_entry.value()); } left_line.x -= left_line.inverse_slope; } active_list.last().x -= active_list.last().inverse_slope; } --scanline; // remove any edge that goes out of bound from the active list for (size_t i = 0, count = active_list.size(); i < count; ++i) { if (scanline <= active_list[i].minimum_y) { active_list.remove(i); --count; --i; } } } } bool Path::is_part_of_closed_polygon(const Point& p0, const Point& p1) { if (!m_graph_node_map.has_value()) generate_path_graph(); ASSERT(m_graph_node_map.has_value()); auto hash = hash_line(p0, p1); auto maybe_entry = m_graph_node_map.value().get(hash); if (!maybe_entry.has_value()) return true; const auto& entry = maybe_entry.value(); // check if the entry is part of a loop auto is_part_of_loop = false; HashTable visited; Vector queue; queue.append(entry); for (; queue.size();) { const auto* node = queue.take_first(); if (visited.contains(node->hash)) continue; visited.set(node->hash); if (node == entry) { is_part_of_loop = true; break; } } return is_part_of_loop; } // FIXME: We need a better hash, and a wider type unsigned Path::hash_line(const Point& from, const Point& to) { u32 p0 = pair_int_hash(from.x(), from.y()); u32 p1 = pair_int_hash(to.x(), to.y()); return pair_int_hash(p0, p1); } }