/* * Copyright (c) 2023, Andreas Kling * Copyright (c) 2023, Simon Wanner * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef JIT_ARCH_SUPPORTED # define LOG_JIT_SUCCESS 0 # define LOG_JIT_FAILURE 1 # define DUMP_JIT_MACHINE_CODE_TO_STDOUT 0 # define DUMP_JIT_DISASSEMBLY 0 # define TRY_OR_SET_EXCEPTION(expression) \ ({ \ /* Ignore -Wshadow to allow nesting the macro. */ \ AK_IGNORE_DIAGNOSTIC("-Wshadow", \ auto&& _temporary_result = (expression)); \ static_assert(!::AK::Detail::IsLvalueReference, \ "Do not return a reference from a fallible expression"); \ if (_temporary_result.is_error()) [[unlikely]] { \ vm.bytecode_interpreter().reg(Bytecode::Register::exception()) = _temporary_result.release_error().value().value(); \ return {}; \ } \ _temporary_result.release_value(); \ }) namespace JS::JIT { void Compiler::store_vm_register(Bytecode::Register dst, Assembler::Reg src) { m_assembler.mov( Assembler::Operand::Mem64BaseAndOffset(REGISTER_ARRAY_BASE, dst.index() * sizeof(Value)), Assembler::Operand::Register(src)); } void Compiler::load_vm_register(Assembler::Reg dst, Bytecode::Register src) { m_assembler.mov( Assembler::Operand::Register(dst), Assembler::Operand::Mem64BaseAndOffset(REGISTER_ARRAY_BASE, src.index() * sizeof(Value))); } void Compiler::load_accumulator(Assembler::Reg dst) { m_assembler.mov( Assembler::Operand::Register(dst), Assembler::Operand::Register(CACHED_ACCUMULATOR)); } void Compiler::store_accumulator(Assembler::Reg src) { m_assembler.mov( Assembler::Operand::Register(CACHED_ACCUMULATOR), Assembler::Operand::Register(src)); } void Compiler::reload_cached_accumulator() { m_assembler.mov( Assembler::Operand::Register(CACHED_ACCUMULATOR), Assembler::Operand::Mem64BaseAndOffset(REGISTER_ARRAY_BASE, Bytecode::Register::accumulator_index * sizeof(Value))); } void Compiler::flush_cached_accumulator() { m_assembler.mov( Assembler::Operand::Mem64BaseAndOffset(REGISTER_ARRAY_BASE, Bytecode::Register::accumulator_index * sizeof(Value)), Assembler::Operand::Register(CACHED_ACCUMULATOR)); } void Compiler::store_vm_local(size_t dst, Assembler::Reg src) { m_assembler.mov( Assembler::Operand::Mem64BaseAndOffset(LOCALS_ARRAY_BASE, dst * sizeof(Value)), Assembler::Operand::Register(src)); } void Compiler::load_vm_local(Assembler::Reg dst, size_t src) { m_assembler.mov( Assembler::Operand::Register(dst), Assembler::Operand::Mem64BaseAndOffset(LOCALS_ARRAY_BASE, src * sizeof(Value))); } void Compiler::compile_load_immediate(Bytecode::Op::LoadImmediate const& op) { m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(op.value().encoded())); store_accumulator(GPR0); } void Compiler::compile_load(Bytecode::Op::Load const& op) { load_vm_register(GPR0, op.src()); store_accumulator(GPR0); } void Compiler::compile_store(Bytecode::Op::Store const& op) { load_accumulator(GPR0); store_vm_register(op.dst(), GPR0); } static Value cxx_throw_binding_not_initialized(VM& vm, size_t index) { auto const& variable_name = vm.running_execution_context().function->local_variables_names()[index]; TRY_OR_SET_EXCEPTION(vm.throw_completion(ErrorType::BindingNotInitialized, variable_name)); return {}; } void Compiler::compile_get_local(Bytecode::Op::GetLocal const& op) { load_vm_local(GPR0, op.index()); // if (GPR0 == ) throw ReferenceError(BindingNotInitialized) Assembler::Label not_empty {}; m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(Value().encoded())); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR1), not_empty); m_assembler.mov(Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(op.index())); native_call((void*)cxx_throw_binding_not_initialized); check_exception(); not_empty.link(m_assembler); store_accumulator(GPR0); } void Compiler::compile_set_local(Bytecode::Op::SetLocal const& op) { load_accumulator(GPR0); store_vm_local(op.index(), GPR0); } static Value cxx_typeof_local(VM& vm, Value value) { return PrimitiveString::create(vm, value.typeof()); } void Compiler::compile_typeof_local(Bytecode::Op::TypeofLocal const& op) { load_vm_local(ARG1, op.index()); native_call((void*)cxx_typeof_local); store_accumulator(GPR0); } void Compiler::compile_jump(Bytecode::Op::Jump const& op) { m_assembler.jump(label_for(op.true_target()->block())); } static bool cxx_to_boolean(VM&, Value value) { return value.to_boolean_slow_case(); } void Compiler::compile_to_boolean(Assembler::Reg dst, Assembler::Reg src) { // dst = src; m_assembler.mov( Assembler::Operand::Register(dst), Assembler::Operand::Register(src)); // dst >>= 48; m_assembler.shift_right( Assembler::Operand::Register(dst), Assembler::Operand::Imm(48)); // if (dst != BOOLEAN_TAG) goto slow_case; Assembler::Label slow_case {}; m_assembler.jump_if( Assembler::Operand::Register(dst), Assembler::Condition::NotEqualTo, Assembler::Operand::Imm(BOOLEAN_TAG), slow_case); // Fast path for JS::Value booleans. // dst = src; m_assembler.mov( Assembler::Operand::Register(dst), Assembler::Operand::Register(src)); // goto end; auto end = m_assembler.jump(); // slow_case: // call C++ helper slow_case.link(m_assembler); m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(src)); native_call((void*)cxx_to_boolean); m_assembler.mov( Assembler::Operand::Register(dst), Assembler::Operand::Register(RET)); // end: end.link(m_assembler); // dst &= 1; m_assembler.bitwise_and( Assembler::Operand::Register(dst), Assembler::Operand::Imm(1)); } void Compiler::compile_jump_conditional(Bytecode::Op::JumpConditional const& op) { load_accumulator(GPR1); compile_to_boolean(GPR0, GPR1); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), label_for(op.false_target()->block())); m_assembler.jump(label_for(op.true_target()->block())); } void Compiler::compile_jump_nullish(Bytecode::Op::JumpNullish const& op) { load_accumulator(GPR0); m_assembler.shift_right( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(48)); m_assembler.bitwise_and( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(IS_NULLISH_EXTRACT_PATTERN)); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(IS_NULLISH_PATTERN), label_for(op.true_target()->block())); m_assembler.jump(label_for(op.false_target()->block())); } void Compiler::compile_jump_undefined(Bytecode::Op::JumpUndefined const& op) { load_accumulator(GPR0); m_assembler.shift_right( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(48)); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(UNDEFINED_TAG), label_for(op.true_target()->block())); m_assembler.jump(label_for(op.false_target()->block())); } [[maybe_unused]] static Value cxx_increment(VM& vm, Value value) { auto old_value = TRY_OR_SET_EXCEPTION(value.to_numeric(vm)); if (old_value.is_number()) return Value(old_value.as_double() + 1); return BigInt::create(vm, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 })); } void Compiler::jump_if_int32(Assembler::Reg reg, Assembler::Label& label) { // GPR0 = reg >> 48; m_assembler.mov(Assembler::Operand::Register(GPR0), Assembler::Operand::Register(reg)); m_assembler.shift_right(Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(48)); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(INT32_TAG), label); } template void Compiler::branch_if_type(Assembler::Reg reg, u16 type_tag, Codegen codegen) { // GPR0 = reg >> 48; m_assembler.mov(Assembler::Operand::Register(GPR0), Assembler::Operand::Register(reg)); m_assembler.shift_right(Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(48)); Assembler::Label not_type_case {}; m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::NotEqualTo, Assembler::Operand::Imm(type_tag), not_type_case); codegen(); not_type_case.link(m_assembler); } template void Compiler::branch_if_both_int32(Assembler::Reg lhs, Assembler::Reg rhs, Codegen codegen) { // GPR0 = lhs >> 48; m_assembler.mov(Assembler::Operand::Register(GPR0), Assembler::Operand::Register(lhs)); m_assembler.shift_right(Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(48)); // GPR1 = rhs >> 48; m_assembler.mov(Assembler::Operand::Register(GPR1), Assembler::Operand::Register(rhs)); m_assembler.shift_right(Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(48)); Assembler::Label not_int32_case {}; m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::NotEqualTo, Assembler::Operand::Imm(INT32_TAG), not_int32_case); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::NotEqualTo, Assembler::Operand::Imm(INT32_TAG), not_int32_case); codegen(); not_int32_case.link(m_assembler); } void Compiler::jump_if_not_double(Assembler::Reg reg, Assembler::Reg nan, Assembler::Reg temp, Assembler::Label& label) { Assembler::Label is_double {}; // if (reg == nan) goto is_double m_assembler.jump_if( Assembler::Operand::Register(reg), Assembler::Condition::EqualTo, Assembler::Operand::Register(nan), is_double); // temp = reg m_assembler.mov(Assembler::Operand::Register(temp), Assembler::Operand::Register(reg)); // if (temp & CANON_NAN_BITS == CANON_NAN_BITS) goto label m_assembler.bitwise_and( Assembler::Operand::Register(temp), Assembler::Operand::Register(nan)); m_assembler.jump_if( Assembler::Operand::Register(temp), Assembler::Condition::EqualTo, Assembler::Operand::Register(nan), label); is_double.link(m_assembler); } void Compiler::convert_to_double(Assembler::Reg dst, Assembler::Reg src, Assembler::Reg nan, Assembler::Reg temp, Assembler::Label& not_number) { Assembler::Label is_i32; Assembler::Label end; jump_if_int32(src, is_i32); jump_if_not_double(src, nan, temp, not_number); m_assembler.mov( Assembler::Operand::FloatRegister(dst), Assembler::Operand::Register(src)); m_assembler.jump(end); is_i32.link(m_assembler); m_assembler.convert_i32_to_double( Assembler::Operand::FloatRegister(dst), Assembler::Operand::Register(src)); end.link(m_assembler); } template void Compiler::compile_binary_op_fastpaths(Assembler::Reg lhs, Assembler::Reg rhs, CodegenI32 codegen_i32, CodegenDouble codegen_double, CodegenValue codegen_value) { Assembler::Label end {}; Assembler::Label slow_case {}; // The only case where we can take the int32 fastpath branch_if_both_int32(lhs, rhs, [&] { // use GPR0 to preserve lhs for the slow case m_assembler.mov32( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(lhs)); store_accumulator(codegen_i32(GPR0, rhs, slow_case)); // accumulator |= SHIFTED_INT32_TAG; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(SHIFTED_INT32_TAG)); m_assembler.bitwise_or( Assembler::Operand::Register(CACHED_ACCUMULATOR), Assembler::Operand::Register(GPR0)); m_assembler.jump(end); }); // accumulator = op_double(lhs.to_double(), rhs.to_double()) [if not numeric goto slow_case] auto temp_register = GPR0; auto nan_register = GPR1; m_assembler.mov(Assembler::Operand::Register(nan_register), Assembler::Operand::Imm(CANON_NAN_BITS)); convert_to_double(FPR0, ARG1, nan_register, temp_register, slow_case); convert_to_double(FPR1, ARG2, nan_register, temp_register, slow_case); auto result_fp_register = codegen_double(FPR0, FPR1); // if result != result then result = nan (canonical) Assembler::Label nan_case; m_assembler.jump_if( Assembler::Operand::FloatRegister(result_fp_register), Assembler::Condition::Unordered, Assembler::Operand::FloatRegister(result_fp_register), nan_case); m_assembler.mov( Assembler::Operand::Register(CACHED_ACCUMULATOR), Assembler::Operand::FloatRegister(result_fp_register)); m_assembler.jump(end); nan_case.link(m_assembler); m_assembler.mov( Assembler::Operand::Register(CACHED_ACCUMULATOR), Assembler::Operand::Register(nan_register)); m_assembler.jump(end); slow_case.link(m_assembler); // accumulator = TRY(op_value(lhs, rhs)) store_accumulator(codegen_value(lhs, rhs)); check_exception(); end.link(m_assembler); } template void Compiler::compiler_comparison_fastpaths(Assembler::Reg lhs, Assembler::Reg rhs, CodegenI32 codegen_i32, CodegenDouble codegen_double, CodegenValue codegen_value) { Assembler::Label end {}; Assembler::Label slow_case {}; // The only case where we can take the int32 fastpath branch_if_both_int32(lhs, rhs, [&] { store_accumulator(codegen_i32(lhs, rhs)); // accumulator |= SHIFTED_BOOLEAN_TAG; m_assembler.jump(end); }); // accumulator = op_double(lhs.to_double(), rhs.to_double()) auto temp_register = GPR0; auto nan_register = GPR1; m_assembler.mov(Assembler::Operand::Register(nan_register), Assembler::Operand::Imm(CANON_NAN_BITS)); convert_to_double(FPR0, ARG1, nan_register, temp_register, slow_case); convert_to_double(FPR1, ARG2, nan_register, temp_register, slow_case); store_accumulator(codegen_double(FPR0, FPR1)); m_assembler.jump(end); slow_case.link(m_assembler); // accumulator = TRY(op_value(lhs, rhs)) store_accumulator(codegen_value(lhs, rhs)); check_exception(); end.link(m_assembler); } void Compiler::compile_increment(Bytecode::Op::Increment const&) { load_accumulator(ARG1); Assembler::Label end {}; Assembler::Label slow_case {}; branch_if_int32(ARG1, [&] { // GPR0 = ARG1 m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(ARG1)); // GPR0++; m_assembler.inc32( Assembler::Operand::Register(GPR0), slow_case); // accumulator = GPR0 | SHIFTED_INT32_TAG; m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(SHIFTED_INT32_TAG)); m_assembler.bitwise_or( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR1)); store_accumulator(GPR0); m_assembler.jump(end); }); slow_case.link(m_assembler); native_call((void*)cxx_increment); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_decrement(VM& vm, Value value) { auto old_value = TRY_OR_SET_EXCEPTION(value.to_numeric(vm)); if (old_value.is_number()) return Value(old_value.as_double() - 1); return BigInt::create(vm, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 })); } void Compiler::compile_decrement(Bytecode::Op::Decrement const&) { load_accumulator(ARG1); Assembler::Label end {}; Assembler::Label slow_case {}; branch_if_int32(ARG1, [&] { // GPR0 = ARG1; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(ARG1)); // GPR0--; m_assembler.dec32( Assembler::Operand::Register(GPR0), slow_case); // accumulator = GPR0 | SHIFTED_INT32_TAG; m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(SHIFTED_INT32_TAG)); m_assembler.bitwise_or( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR1)); // accumulator = GPR0; store_accumulator(GPR0); m_assembler.jump(end); }); slow_case.link(m_assembler); native_call((void*)cxx_decrement); store_accumulator(RET); check_exception(); end.link(m_assembler); } void Compiler::check_exception() { load_vm_register(GPR0, Bytecode::Register::exception()); m_assembler.mov(Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(Value().encoded())); if (auto const* handler = current_block().handler(); handler) { Assembler::Label no_exception; m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Register(GPR1), no_exception); store_accumulator(GPR0); store_vm_register(Bytecode::Register::exception(), GPR1); m_assembler.jump(label_for(*handler)); no_exception.link(m_assembler); } else if (auto const* finalizer = current_block().finalizer(); finalizer) { store_vm_register(Bytecode::Register::saved_exception(), GPR0); store_vm_register(Bytecode::Register::exception(), GPR1); m_assembler.jump_if(Assembler::Operand::Register(GPR0), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR1), label_for(*finalizer)); } else { m_assembler.jump_if(Assembler::Operand::Register(GPR0), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR1), m_exit_label); } } static void cxx_enter_unwind_context(VM& vm) { vm.bytecode_interpreter().enter_unwind_context(); } void Compiler::compile_enter_unwind_context(Bytecode::Op::EnterUnwindContext const& op) { native_call((void*)cxx_enter_unwind_context); m_assembler.jump(label_for(op.entry_point().block())); } static void cxx_leave_unwind_context(VM& vm) { vm.bytecode_interpreter().leave_unwind_context(); } void Compiler::compile_leave_unwind_context(Bytecode::Op::LeaveUnwindContext const&) { native_call((void*)cxx_leave_unwind_context); } void Compiler::compile_throw(Bytecode::Op::Throw const&) { load_accumulator(GPR0); store_vm_register(Bytecode::Register::exception(), GPR0); check_exception(); } static void cxx_catch(VM& vm) { vm.bytecode_interpreter().catch_exception(); } void Compiler::compile_catch(Bytecode::Op::Catch const&) { native_call((void*)cxx_catch); } static ThrowCompletionOr loosely_inequals(VM& vm, Value src1, Value src2) { return Value(!TRY(is_loosely_equal(vm, src1, src2))); } static ThrowCompletionOr loosely_equals(VM& vm, Value src1, Value src2) { return Value(TRY(is_loosely_equal(vm, src1, src2))); } static ThrowCompletionOr strict_inequals(VM&, Value src1, Value src2) { return Value(!is_strictly_equal(src1, src2)); } static ThrowCompletionOr strict_equals(VM&, Value src1, Value src2) { return Value(is_strictly_equal(src1, src2)); } template void Compiler::branch_if_same_type_for_equality(Assembler::Reg lhs, Assembler::Reg rhs, Codegen codegen) { Assembler::Label same_type_case {}; Assembler::Label not_same_type_case {}; // GPR0 = lhs >> TAG_SHIFT m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(lhs)); m_assembler.shift_right( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(TAG_SHIFT)); // GPR1 = rhs >> TAG_SHIFT m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Register(rhs)); m_assembler.shift_right( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(TAG_SHIFT)); // if (GPR0 == GPR1) goto same_type_case m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Register(GPR1), same_type_case); Assembler::Label lhs_is_number {}; // if (lhs & CANON_NAN_BITS != CANON_NAN_BITS) goto lhs_is_number m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(lhs)); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(CANON_NAN_BITS)); m_assembler.bitwise_and( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR1)); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR1), lhs_is_number); // if (lhs == CANON_NAN_BITS) goto lhs_is_number m_assembler.jump_if( Assembler::Operand::Register(lhs), Assembler::Condition::EqualTo, Assembler::Operand::Register(GPR1), lhs_is_number); // if (lhs >> TAG_SHIFT == INT32_TAG) goto lhs_is_number m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(lhs)); m_assembler.shift_right( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(TAG_SHIFT)); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(INT32_TAG), lhs_is_number); m_assembler.jump(not_same_type_case); lhs_is_number.link(m_assembler); Assembler::Label rhs_is_number {}; // if (rhs & CANON_NAN_BITS != CANON_NAN_BITS) goto rhs_is_number m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(rhs)); m_assembler.bitwise_and( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR1)); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR1), rhs_is_number); // if (rhs == CANON_NAN_BITS) goto rhs_is_number m_assembler.jump_if( Assembler::Operand::Register(rhs), Assembler::Condition::EqualTo, Assembler::Operand::Register(GPR1), rhs_is_number); // if (rhs >> TAG_SHIFT == INT32_TAG) goto rhs_is_number m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(rhs)); m_assembler.shift_right( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(TAG_SHIFT)); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(INT32_TAG), rhs_is_number); m_assembler.jump(not_same_type_case); same_type_case.link(m_assembler); rhs_is_number.link(m_assembler); codegen(); not_same_type_case.link(m_assembler); } void Compiler::compile_is_strictly_equal(Assembler::Reg lhs, Assembler::Reg rhs, Assembler::Label& slow_case) { Assembler::Label end {}; Assembler::Label general_case {}; Assembler::Label false_case {}; m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(CANON_NAN_BITS)); convert_to_double(FPR0, lhs, GPR1, GPR0, general_case); convert_to_double(FPR1, rhs, GPR1, GPR0, general_case); // if (FPR0 == nan || FPR1 == nan) goto false_case; m_assembler.jump_if( Assembler::Operand::FloatRegister(FPR0), Assembler::Condition::Unordered, Assembler::Operand::FloatRegister(FPR1), false_case); // if (FPR0 != FPR1) goto false_case; m_assembler.jump_if( Assembler::Operand::FloatRegister(FPR0), Assembler::Condition::NotEqualTo, Assembler::Operand::FloatRegister(FPR1), false_case); m_assembler.mov( Assembler::Operand::Register(RET), Assembler::Operand::Imm(1)); m_assembler.jump(end); general_case.link(m_assembler); // if (lhs.is_bigint()) goto slow_case; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(lhs)); m_assembler.shift_right( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(TAG_SHIFT)); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(BIGINT_TAG), slow_case); // if (lhs.is_string()) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(STRING_TAG), slow_case); m_assembler.jump_if( Assembler::Operand::Register(lhs), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(rhs), false_case); m_assembler.mov( Assembler::Operand::Register(RET), Assembler::Operand::Imm(1)); m_assembler.jump(end); false_case.link(m_assembler); m_assembler.mov( Assembler::Operand::Register(RET), Assembler::Operand::Imm(0)); end.link(m_assembler); } static Value cxx_strict_equals(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(strict_equals(vm, lhs, rhs)); } void Compiler::compile_strict_equals(Bytecode::Op::StrictlyEquals const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; Assembler::Label slow_case {}; branch_if_same_type_for_equality(ARG1, ARG2, [&] { compile_is_strictly_equal(ARG1, ARG2, slow_case); // RET = RET | BOOLEAN_TAG << TAG_SHIFT; m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(BOOLEAN_TAG << TAG_SHIFT)); m_assembler.bitwise_or( Assembler::Operand::Register(RET), Assembler::Operand::Register(GPR1)); store_accumulator(RET); m_assembler.jump(end); }); // RET = false m_assembler.mov( Assembler::Operand::Register(RET), Assembler::Operand::Imm(Value(false).encoded())); store_accumulator(RET); m_assembler.jump(end); slow_case.link(m_assembler); native_call((void*)cxx_strict_equals); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_strict_inequals(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(strict_inequals(vm, lhs, rhs)); } void Compiler::compile_strict_inequals(Bytecode::Op::StrictlyInequals const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; Assembler::Label slow_case {}; branch_if_same_type_for_equality(ARG1, ARG2, [&] { compile_is_strictly_equal(ARG1, ARG2, slow_case); // RET = (RET ^ 1) | BOOLEAN_TAG << TAG_SHIFT; m_assembler.bitwise_xor32( Assembler::Operand::Register(RET), Assembler::Operand::Imm(1)); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(BOOLEAN_TAG << TAG_SHIFT)); m_assembler.bitwise_or( Assembler::Operand::Register(RET), Assembler::Operand::Register(GPR1)); store_accumulator(RET); m_assembler.jump(end); }); // RET = true m_assembler.mov( Assembler::Operand::Register(RET), Assembler::Operand::Imm(Value(true).encoded())); store_accumulator(RET); m_assembler.jump(end); slow_case.link(m_assembler); native_call((void*)cxx_strict_inequals); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_loosely_equals(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(loosely_equals(vm, lhs, rhs)); } void Compiler::compile_loosely_equals(Bytecode::Op::LooselyEquals const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; Assembler::Label slow_case {}; branch_if_same_type_for_equality(ARG1, ARG2, [&] { compile_is_strictly_equal(ARG1, ARG2, slow_case); // RET = RET | BOOLEAN_TAG << TAG_SHIFT; m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(BOOLEAN_TAG << TAG_SHIFT)); m_assembler.bitwise_or( Assembler::Operand::Register(RET), Assembler::Operand::Register(GPR1)); store_accumulator(RET); m_assembler.jump(end); }); slow_case.link(m_assembler); native_call((void*)cxx_loosely_equals); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_loosely_inequals(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(loosely_inequals(vm, lhs, rhs)); } void Compiler::compile_loosely_inequals(Bytecode::Op::LooselyInequals const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; Assembler::Label slow_case {}; branch_if_same_type_for_equality(ARG1, ARG2, [&] { compile_is_strictly_equal(ARG1, ARG2, slow_case); // RET = (RET ^ 1) | BOOLEAN_TAG << TAG_SHIFT; m_assembler.bitwise_xor32( Assembler::Operand::Register(RET), Assembler::Operand::Imm(1)); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(BOOLEAN_TAG << TAG_SHIFT)); m_assembler.bitwise_or( Assembler::Operand::Register(RET), Assembler::Operand::Register(GPR1)); store_accumulator(RET); m_assembler.jump(end); }); slow_case.link(m_assembler); native_call((void*)cxx_loosely_inequals); store_accumulator(RET); check_exception(); end.link(m_assembler); } # define DO_COMPILE_COMMON_BINARY_OP(TitleCaseName, snake_case_name) \ static Value cxx_##snake_case_name(VM& vm, Value lhs, Value rhs) \ { \ return TRY_OR_SET_EXCEPTION(snake_case_name(vm, lhs, rhs)); \ } \ \ void Compiler::compile_##snake_case_name(Bytecode::Op::TitleCaseName const& op) \ { \ load_vm_register(ARG1, op.lhs()); \ load_accumulator(ARG2); \ native_call((void*)cxx_##snake_case_name); \ store_accumulator(RET); \ check_exception(); \ } JS_ENUMERATE_COMMON_BINARY_OPS_WITHOUT_FAST_PATH(DO_COMPILE_COMMON_BINARY_OP) # undef DO_COMPILE_COMMON_BINARY_OP static Value cxx_add(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(add(vm, lhs, rhs)); } void Compiler::compile_add(Bytecode::Op::Add const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); compile_binary_op_fastpaths( ARG1, ARG2, [&](auto lhs, auto rhs, auto& slow_case) { m_assembler.add32( Assembler::Operand::Register(lhs), Assembler::Operand::Register(rhs), slow_case); return lhs; }, [&](auto lhs, auto rhs) { m_assembler.add( Assembler::Operand::FloatRegister(lhs), Assembler::Operand::FloatRegister(rhs)); return lhs; }, [&](auto lhs, auto rhs) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(lhs)); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Register(rhs)); native_call((void*)cxx_add); return RET; }); } static Value cxx_sub(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(sub(vm, lhs, rhs)); } void Compiler::compile_sub(Bytecode::Op::Sub const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); compile_binary_op_fastpaths( ARG1, ARG2, [&](auto lhs, auto rhs, auto& slow_case) { m_assembler.sub32( Assembler::Operand::Register(lhs), Assembler::Operand::Register(rhs), slow_case); return lhs; }, [&](auto lhs, auto rhs) { m_assembler.sub( Assembler::Operand::FloatRegister(lhs), Assembler::Operand::FloatRegister(rhs)); return lhs; }, [&](auto lhs, auto rhs) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(lhs)); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Register(rhs)); native_call((void*)cxx_sub); return RET; }); } static Value cxx_mul(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(mul(vm, lhs, rhs)); } void Compiler::compile_mul(Bytecode::Op::Mul const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); compile_binary_op_fastpaths( ARG1, ARG2, [&](auto lhs, auto rhs, auto& slow_case) { m_assembler.mul32( Assembler::Operand::Register(lhs), Assembler::Operand::Register(rhs), slow_case); return lhs; }, [&](auto lhs, auto rhs) { m_assembler.mul( Assembler::Operand::FloatRegister(lhs), Assembler::Operand::FloatRegister(rhs)); return lhs; }, [&](auto lhs, auto rhs) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(lhs)); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Register(rhs)); native_call((void*)cxx_mul); return RET; }); } # define DO_COMPILE_COMPARISON_OP(TitleCaseName, snake_case_name, IntegerCondition, FloatCondition) \ static Value cxx_##snake_case_name(VM& vm, Value lhs, Value rhs) \ { \ return TRY_OR_SET_EXCEPTION(snake_case_name(vm, lhs, rhs)); \ } \ \ void Compiler::compile_##snake_case_name(Bytecode::Op::TitleCaseName const& op) \ { \ load_vm_register(ARG1, op.lhs()); \ load_accumulator(ARG2); \ \ compiler_comparison_fastpaths( \ ARG1, ARG2, \ [&](auto lhs, auto rhs) { \ m_assembler.sign_extend_32_to_64_bits(lhs); \ m_assembler.sign_extend_32_to_64_bits(rhs); \ \ /* accumulator = SHIFTED_BOOLEAN_TAG | (arg1 condition arg2) */ \ m_assembler.mov( \ Assembler::Operand::Register(GPR0), \ Assembler::Operand::Imm(SHIFTED_BOOLEAN_TAG)); \ m_assembler.cmp( \ Assembler::Operand::Register(lhs), \ Assembler::Operand::Register(rhs)); \ m_assembler.set_if( \ Assembler::Condition::IntegerCondition, \ Assembler::Operand::Register(GPR0)); /* sets only first byte */ \ return GPR0; \ }, \ [&](auto lhs, auto rhs) { \ Assembler::Label is_nan; \ /* accumulator = SHIFTED_BOOLEAN_TAG | (arg1 condition arg2) */ \ m_assembler.mov( \ Assembler::Operand::Register(GPR0), \ Assembler::Operand::Imm(SHIFTED_BOOLEAN_TAG)); \ m_assembler.cmp( \ Assembler::Operand::FloatRegister(lhs), \ Assembler::Operand::FloatRegister(rhs)); \ m_assembler.jump_if( \ Assembler::Condition::Unordered, \ is_nan); \ m_assembler.set_if( \ Assembler::Condition::FloatCondition, \ Assembler::Operand::Register(GPR0)); /* sets only first byte */ \ is_nan.link(m_assembler); \ return GPR0; \ }, \ [&](auto lhs, auto rhs) { \ m_assembler.mov( \ Assembler::Operand::Register(ARG1), \ Assembler::Operand::Register(lhs)); \ m_assembler.mov( \ Assembler::Operand::Register(ARG2), \ Assembler::Operand::Register(rhs)); \ native_call((void*)cxx_##snake_case_name); \ return RET; \ }); \ } JS_ENUMERATE_COMPARISON_OPS(DO_COMPILE_COMPARISON_OP) # undef DO_COMPILE_COMPARISON_OP static Value cxx_bitwise_and(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(bitwise_and(vm, lhs, rhs)); } void Compiler::compile_bitwise_and(Bytecode::Op::BitwiseAnd const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; branch_if_both_int32(ARG1, ARG2, [&] { // NOTE: Since both sides are Int32, we know that the upper 32 bits are nothing but the INT32_TAG. // This means we can get away with just a simple 64-bit bitwise and. m_assembler.bitwise_and( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(ARG2)); store_accumulator(ARG1); m_assembler.jump(end); }); native_call((void*)cxx_bitwise_and); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_bitwise_or(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(bitwise_or(vm, lhs, rhs)); } void Compiler::compile_bitwise_or(Bytecode::Op::BitwiseOr const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; branch_if_both_int32(ARG1, ARG2, [&] { // NOTE: Since both sides are Int32, we know that the upper 32 bits are nothing but the INT32_TAG. // This means we can get away with just a simple 64-bit bitwise or. m_assembler.bitwise_or( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(ARG2)); store_accumulator(ARG1); m_assembler.jump(end); }); native_call((void*)cxx_bitwise_or); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_bitwise_xor(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(bitwise_xor(vm, lhs, rhs)); } void Compiler::compile_bitwise_xor(Bytecode::Op::BitwiseXor const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; branch_if_both_int32(ARG1, ARG2, [&] { // ARG1 ^= ARG2 (32-bit) m_assembler.bitwise_xor32( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(ARG2)); // accumulator = ARG1 | SHIFTED_INT32_TAG; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(SHIFTED_INT32_TAG)); m_assembler.bitwise_or( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(GPR0)); store_accumulator(ARG1); m_assembler.jump(end); }); native_call((void*)cxx_bitwise_xor); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_left_shift(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(left_shift(vm, lhs, rhs)); } void Compiler::compile_left_shift(Bytecode::Op::LeftShift const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; branch_if_both_int32(ARG1, ARG2, [&] { // RCX = ARG2 m_assembler.mov( Assembler::Operand::Register(Assembler::Reg::RCX), Assembler::Operand::Register(ARG2)); // ARG1 <<= CL (32-bit) m_assembler.shift_left32(Assembler::Operand::Register(ARG1), {}); // accumulator = ARG1 | SHIFTED_INT32_TAG; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(SHIFTED_INT32_TAG)); m_assembler.bitwise_or( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(GPR0)); store_accumulator(ARG1); m_assembler.jump(end); }); native_call((void*)cxx_left_shift); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_right_shift(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(right_shift(vm, lhs, rhs)); } void Compiler::compile_right_shift(Bytecode::Op::RightShift const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; branch_if_both_int32(ARG1, ARG2, [&] { // RCX = ARG2 m_assembler.mov( Assembler::Operand::Register(Assembler::Reg::RCX), Assembler::Operand::Register(ARG2)); // ARG1 >>= CL (32-bit) m_assembler.arithmetic_right_shift32(Assembler::Operand::Register(ARG1), {}); // accumulator = ARG1 | SHIFTED_INT32_TAG; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(SHIFTED_INT32_TAG)); m_assembler.bitwise_or( Assembler::Operand::Register(ARG1), Assembler::Operand::Register(GPR0)); store_accumulator(ARG1); m_assembler.jump(end); }); native_call((void*)cxx_right_shift); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_unsigned_right_shift(VM& vm, Value lhs, Value rhs) { return TRY_OR_SET_EXCEPTION(unsigned_right_shift(vm, lhs, rhs)); } void Compiler::compile_unsigned_right_shift(Bytecode::Op::UnsignedRightShift const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); Assembler::Label end {}; Assembler::Label slow_case {}; branch_if_both_int32(ARG1, ARG2, [&] { // GPR0 = ARG1 m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(ARG1)); // RCX = ARG2 m_assembler.mov( Assembler::Operand::Register(Assembler::Reg::RCX), Assembler::Operand::Register(ARG2)); // GPR0 >>>= CL (32-bit) m_assembler.shift_right32(Assembler::Operand::Register(GPR0), {}); // GPR1 = sign_extended(GPR0) m_assembler.mov32( Assembler::Operand::Register(GPR1), Assembler::Operand::Register(GPR0), Assembler::Extension::SignExtend); // if (GPR1 < 0) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::SignedLessThan, Assembler::Operand::Imm(0), slow_case); // accumulator = GPR0 | SHIFTED_INT32_TAG; m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(SHIFTED_INT32_TAG)); m_assembler.bitwise_or( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR1)); store_accumulator(GPR0); m_assembler.jump(end); }); slow_case.link(m_assembler); native_call((void*)cxx_unsigned_right_shift); store_accumulator(RET); check_exception(); end.link(m_assembler); } static ThrowCompletionOr not_(VM&, Value value) { return Value(!value.to_boolean()); } static ThrowCompletionOr typeof_(VM& vm, Value value) { return PrimitiveString::create(vm, value.typeof()); } # define DO_COMPILE_COMMON_UNARY_OP(TitleCaseName, snake_case_name) \ static Value cxx_##snake_case_name(VM& vm, Value value) \ { \ return TRY_OR_SET_EXCEPTION(snake_case_name(vm, value)); \ } \ \ void Compiler::compile_##snake_case_name(Bytecode::Op::TitleCaseName const&) \ { \ load_accumulator(ARG1); \ native_call((void*)cxx_##snake_case_name); \ store_accumulator(RET); \ check_exception(); \ } JS_ENUMERATE_COMMON_UNARY_OPS(DO_COMPILE_COMMON_UNARY_OP) # undef DO_COMPILE_COMMON_UNARY_OP void Compiler::compile_return(Bytecode::Op::Return const&) { load_accumulator(GPR0); if (auto const* finalizer = current_block().finalizer(); finalizer) { store_vm_register(Bytecode::Register::saved_return_value(), GPR0); m_assembler.jump(label_for(*finalizer)); } else { store_vm_register(Bytecode::Register::return_value(), GPR0); jump_to_exit(); } } static Value cxx_new_string(VM& vm, DeprecatedString const& string) { return PrimitiveString::create(vm, string); } void Compiler::compile_new_string(Bytecode::Op::NewString const& op) { auto const& string = m_bytecode_executable.string_table->get(op.index()); m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&string))); native_call((void*)cxx_new_string); store_accumulator(RET); } void Compiler::compile_new_regexp(Bytecode::Op::NewRegExp const& op) { auto const& parsed_regex = m_bytecode_executable.regex_table->get(op.regex_index()); auto const& pattern = m_bytecode_executable.string_table->get(op.source_index()); auto const& flags = m_bytecode_executable.string_table->get(op.flags_index()); m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&parsed_regex))); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&pattern))); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(bit_cast(&flags))); native_call((void*)Bytecode::new_regexp); store_accumulator(RET); } static Value cxx_new_bigint(VM& vm, Crypto::SignedBigInteger const& bigint) { return BigInt::create(vm, bigint); } void Compiler::compile_new_bigint(Bytecode::Op::NewBigInt const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&op.bigint()))); native_call((void*)cxx_new_bigint); store_accumulator(RET); } static Value cxx_new_object(VM& vm) { auto& realm = *vm.current_realm(); return Object::create(realm, realm.intrinsics().object_prototype()); } void Compiler::compile_new_object(Bytecode::Op::NewObject const&) { native_call((void*)cxx_new_object); store_accumulator(RET); } static Value cxx_new_array(VM& vm, size_t element_count, u32 first_register_index) { auto& realm = *vm.current_realm(); auto array = MUST(Array::create(realm, 0)); for (size_t i = 0; i < element_count; ++i) { auto& value = vm.bytecode_interpreter().reg(Bytecode::Register(first_register_index + i)); array->indexed_properties().put(i, value, default_attributes); } return array; } void Compiler::compile_new_array(Bytecode::Op::NewArray const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(op.element_count())); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(op.element_count() ? op.start().index() : 0)); native_call((void*)cxx_new_array); store_accumulator(RET); } void Compiler::compile_new_function(Bytecode::Op::NewFunction const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&op.function_node()))); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&op.lhs_name()))); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(bit_cast(&op.home_object()))); native_call((void*)Bytecode::new_function); store_accumulator(RET); } static Value cxx_new_class(VM& vm, Value super_class, ClassExpression const& class_expression, Optional const& lhs_name) { return TRY_OR_SET_EXCEPTION(Bytecode::new_class(vm, super_class, class_expression, lhs_name)); } void Compiler::compile_new_class(Bytecode::Op::NewClass const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&op.class_expression()))); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(bit_cast(&op.lhs_name()))); native_call((void*)cxx_new_class); store_accumulator(RET); } static Value cxx_get_by_id(VM& vm, Value base, DeprecatedFlyString const& property, Bytecode::PropertyLookupCache& cache) { return TRY_OR_SET_EXCEPTION(Bytecode::get_by_id(vm, property, base, base, cache)); } void Compiler::compile_get_by_id(Bytecode::Op::GetById const& op) { auto& cache = m_bytecode_executable.property_lookup_caches[op.cache_index()]; Assembler::Label end; Assembler::Label slow_case; m_assembler.mov( Assembler::Operand::Register(ARG5), Assembler::Operand::Imm(bit_cast(&cache))); load_accumulator(ARG1); branch_if_object(ARG1, [&] { extract_object_pointer(GPR0, ARG1); // NOTE: Fast path for Array.length which magically reflects // the "array-like size" of the array object's property storage. if (m_bytecode_executable.get_identifier(op.property()) == "length"sv) { Assembler::Label no_magical_length_property_case; // if (!object.has_magical_length_property) goto no_magical_length_property_case; m_assembler.mov8( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::has_magical_length_property_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), no_magical_length_property_case); // NOTE: The base object has a magical "length" property, so now we just need // to extract the "array-like size" from the object property storage. // If we run into any issues, we'll jump to the slow case and figure things out in C++. // GPR0 = object->indexed_properties().storage() m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::indexed_properties_offset() + IndexedProperties::storage_offset())); // if (GPR0 == nullptr) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); // if (!GPR0->is_simple_storage()) goto slow_case; m_assembler.mov8( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, IndexedPropertyStorage::is_simple_storage_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); // accumulator = GPR0->array_like_size() | SHIFT_INT32_TAG // return m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, SimpleIndexedPropertyStorage::array_size_offset())); m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(SHIFTED_INT32_TAG)); m_assembler.bitwise_or( Assembler::Operand::Register(GPR1), Assembler::Operand::Register(GPR0)); store_accumulator(GPR1); m_assembler.jump(end); no_magical_length_property_case.link(m_assembler); } // if (cache.shape != &object->shape()) goto slow_case; m_assembler.mov( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::shape_offset())); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(ARG5, Bytecode::PropertyLookupCache::shape_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR1, AK::WeakLink::ptr_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR2), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR1), slow_case); // (!object->shape().is_unique() || object->shape().unique_shape_serial_number() == cache.unique_shape_serial_number)) { Assembler::Label fast_case; // GPR1 = object->shape().is_unique() m_assembler.mov8( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR2, Shape::is_unique_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), fast_case); // GPR1 = object->shape().unique_shape_serial_number() m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR2, Shape::unique_shape_serial_number_offset())); // GPR2 = cache.unique_shape_serial_number m_assembler.mov( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(ARG5, Bytecode::PropertyLookupCache::unique_shape_serial_number_offset())); // if (GPR1 != GPR2) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR2), slow_case); fast_case.link(m_assembler); // return object->get_direct(*cache.property_offset); // GPR0 = object // GPR1 = *cache.property_offset * sizeof(Value) m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(ARG5, Bytecode::PropertyLookupCache::property_offset_offset() + decltype(cache.property_offset)::value_offset())); m_assembler.mul32( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(sizeof(Value)), slow_case); // GPR0 = object->m_storage.outline_buffer m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::storage_offset() + Vector::outline_buffer_offset())); // GPR0 = &object->m_storage.outline_buffer[*cache.property_offset] m_assembler.add( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR1)); // *GPR0 = value m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, 0)); store_accumulator(GPR1); m_assembler.jump(end); }); slow_case.link(m_assembler); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.property())))); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(bit_cast(&cache))); native_call((void*)cxx_get_by_id); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_get_by_value(VM& vm, Value base, Value property) { return TRY_OR_SET_EXCEPTION(Bytecode::get_by_value(vm, base, property)); } void Compiler::compile_get_by_value(Bytecode::Op::GetByValue const& op) { load_vm_register(ARG1, op.base()); load_accumulator(ARG2); Assembler::Label end {}; Assembler::Label slow_case {}; branch_if_object(ARG1, [&] { branch_if_int32(ARG2, [&] { // if (ARG2 < 0) goto slow_case; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(ARG2)); m_assembler.sign_extend_32_to_64_bits(GPR0); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::SignedLessThan, Assembler::Operand::Imm(0), slow_case); // GPR0 = extract_pointer(ARG1) extract_object_pointer(GPR0, ARG1); // if (object->may_interfere_with_indexed_property_access()) goto slow_case; m_assembler.mov8( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::may_interfere_with_indexed_property_access_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::NotEqualTo, Assembler::Operand::Imm(0), slow_case); // GPR0 = object->indexed_properties().storage() m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::indexed_properties_offset() + IndexedProperties::storage_offset())); // if (GPR0 == nullptr) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); // if (!GPR0->is_simple_storage()) goto slow_case; m_assembler.mov8( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, IndexedPropertyStorage::is_simple_storage_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); // GPR2 = extract_int32(ARG2) m_assembler.mov32( Assembler::Operand::Register(GPR2), Assembler::Operand::Register(ARG2)); // if (GPR2 >= GPR0->array_like_size()) goto slow_case; m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, SimpleIndexedPropertyStorage::array_size_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR2), Assembler::Condition::SignedGreaterThanOrEqualTo, Assembler::Operand::Register(GPR1), slow_case); // GPR0 = GPR0->elements().outline_buffer() m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, SimpleIndexedPropertyStorage::elements_offset() + Vector::outline_buffer_offset())); // GPR2 *= sizeof(Value) m_assembler.mul32( Assembler::Operand::Register(GPR2), Assembler::Operand::Imm(sizeof(Value)), slow_case); // GPR0 = GPR0[GPR2] m_assembler.add( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR2)); m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, 0)); // if (GPR0.is_empty()) goto slow_case; m_assembler.mov(Assembler::Operand::Register(GPR1), Assembler::Operand::Register(GPR0)); m_assembler.shift_right(Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(TAG_SHIFT)); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(EMPTY_TAG), slow_case); // if (GPR0.is_accessor()) goto slow_case; m_assembler.mov(Assembler::Operand::Register(GPR1), Assembler::Operand::Register(GPR0)); m_assembler.shift_right(Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(TAG_SHIFT)); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(ACCESSOR_TAG), slow_case); // accumulator = GPR0; store_accumulator(GPR0); m_assembler.jump(end); }); }); slow_case.link(m_assembler); native_call((void*)cxx_get_by_value); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_get_global(VM& vm, DeprecatedFlyString const& identifier, Bytecode::GlobalVariableCache& cache) { return TRY_OR_SET_EXCEPTION(Bytecode::get_global(vm.bytecode_interpreter(), identifier, cache)); } void Compiler::compile_get_global(Bytecode::Op::GetGlobal const& op) { auto& cache = m_bytecode_executable.global_variable_caches[op.cache_index()]; m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.identifier())))); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&cache))); Assembler::Label end {}; Assembler::Label slow_case {}; // GPR0 = vm.running_execution_context().realm; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(RUNNING_EXECUTION_CONTEXT_BASE, ExecutionContext::realm_offset())); // GPR0 = GPR0->global_environment(); m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, Realm::global_environment_offset())); // GPR1 = GPR0->object_record(); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, GlobalEnvironment::object_record_offset())); // GPR1 = GPR1->binding_object(); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR1, ObjectEnvironment::binding_object_offset())); // GPR0 = GPR0->declarative_record(); m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, GlobalEnvironment::declarative_record_offset())); // GPR0 = GPR0->environment_serial_number(); m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, DeclarativeEnvironment::environment_serial_number_offset())); // GPR2 = cache.environment_serial_number m_assembler.mov( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(ARG2, Bytecode::GlobalVariableCache::environment_serial_number_offset())); // if (GPR2 != GPR0) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR2), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR0), slow_case); // GPR0 = GPR1->shape() m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR1, Object::shape_offset())); // GPR2 = cache.shape.ptr() m_assembler.mov( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(ARG2, Bytecode::PropertyLookupCache::shape_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR2), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); m_assembler.mov( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(GPR2, AK::WeakLink::ptr_offset())); // if (GPR2 != GPR0) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR2), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR0), slow_case); Assembler::Label fast_case {}; // GPR2 = shape->unique() m_assembler.mov8( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(GPR0, Shape::is_unique_offset())); // if (!GPR2) goto fast_case; m_assembler.jump_if( Assembler::Operand::Register(GPR2), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), fast_case); // GPR2 = shape->unique_shape_serial_number() m_assembler.mov( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(GPR0, Shape::unique_shape_serial_number_offset())); // GPR0 = cache.unique_shape_serial_number m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(ARG2, Bytecode::PropertyLookupCache::unique_shape_serial_number_offset())); // if (GPR2 != GPR0) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR2), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR0), slow_case); fast_case.link(m_assembler); // accumulator = GPR1->get_direct(*cache.property_offset); // GPR0 = GPR1 // GPR1 = *cache.property_offset * sizeof(Value) m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR1)); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(ARG2, Bytecode::PropertyLookupCache::property_offset_offset() + decltype(cache.property_offset)::value_offset())); m_assembler.mul32( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(sizeof(Value)), slow_case); // GPR0 = GPR0->m_storage.outline_buffer m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::storage_offset() + Vector::outline_buffer_offset())); // GPR0 = &GPR0[*cache.property_offset] m_assembler.add( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR1)); // accumulator = *GPR0 m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, 0)); store_accumulator(GPR0); m_assembler.jump(end); slow_case.link(m_assembler); native_call((void*)cxx_get_global); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_get_variable(VM& vm, DeprecatedFlyString const& name, Bytecode::EnvironmentVariableCache& cache) { return TRY_OR_SET_EXCEPTION(Bytecode::get_variable(vm.bytecode_interpreter(), name, cache)); } void Compiler::compile_get_variable(Bytecode::Op::GetVariable const& op) { Assembler::Label slow_case; // if (!cache.has_value()) goto slow_case; m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.environment_variable_caches[op.cache_index()]))); m_assembler.mov8( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(ARG2, Bytecode::EnvironmentVariableCache::has_value_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); // auto environment = vm.running_execution_context().lexical_environment; // GPR1 = current lexical environment m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(RUNNING_EXECUTION_CONTEXT_BASE, ExecutionContext::lexical_environment_offset())); // for (size_t i = 0; i < cache->hops; ++i) // environment = environment->outer_environment(); // GPR0 = hops m_assembler.mov32( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(ARG2, Bytecode::EnvironmentVariableCache::value_offset() + EnvironmentCoordinate::hops_offset())); { // while (GPR0--) // GPR1 = GPR1->outer_environment() Assembler::Label loop_start; Assembler::Label loop_end; loop_start.link(m_assembler); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), loop_end); m_assembler.sub( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(1)); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR1, Environment::outer_environment_offset())); m_assembler.jump(loop_start); loop_end.link(m_assembler); } // GPR1 now points to the environment holding our binding. // if (environment->is_permanently_screwed_by_eval()) goto slow_case; m_assembler.mov8( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR1, Environment::is_permanently_screwed_by_eval_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::NotEqualTo, Assembler::Operand::Imm(0), slow_case); // GPR1 = environment->m_bindings.outline_buffer() m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR1, DeclarativeEnvironment::bindings_offset() + Vector::outline_buffer_offset())); // GPR0 = index m_assembler.mov32( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(ARG2, Bytecode::EnvironmentVariableCache::value_offset() + EnvironmentCoordinate::index_offset())); // GPR0 *= sizeof(DeclarativeEnvironment::Binding) m_assembler.mul32( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(sizeof(DeclarativeEnvironment::Binding)), slow_case); // GPR1 = &binding m_assembler.add( Assembler::Operand::Register(GPR1), Assembler::Operand::Register(GPR0)); // if (!binding.initialized) goto slow_case; m_assembler.mov( Assembler ::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR1, DeclarativeEnvironment::Binding::initialized_offset())); m_assembler.bitwise_and( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(0xff)); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); // accumulator = binding.value; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR1, DeclarativeEnvironment::Binding::value_offset())); store_accumulator(GPR0); Assembler::Label end; m_assembler.jump(end); // Slow case: Uncached access. Call C++ helper. slow_case.link(m_assembler); m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.identifier())))); native_call((void*)cxx_get_variable); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_get_callee_and_this_from_environment(VM& vm, DeprecatedFlyString const& name, Bytecode::Register callee_reg, Bytecode::Register this_reg, Bytecode::EnvironmentVariableCache& cache) { auto& bytecode_interpreter = vm.bytecode_interpreter(); auto callee_and_this = TRY_OR_SET_EXCEPTION(Bytecode::get_callee_and_this_from_environment( bytecode_interpreter, name, cache)); bytecode_interpreter.reg(callee_reg) = callee_and_this.callee; bytecode_interpreter.reg(this_reg) = callee_and_this.this_value; return {}; } void Compiler::compile_get_callee_and_this_from_environment(Bytecode::Op::GetCalleeAndThisFromEnvironment const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.identifier())))); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(op.callee().index())); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(op.this_().index())); m_assembler.mov( Assembler::Operand::Register(ARG4), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.environment_variable_caches[op.cache_index()]))); native_call((void*)cxx_get_callee_and_this_from_environment); check_exception(); } static Value cxx_to_numeric(VM& vm, Value value) { return TRY_OR_SET_EXCEPTION(value.to_numeric(vm)); } void Compiler::compile_to_numeric(Bytecode::Op::ToNumeric const&) { Assembler::Label fast_case {}; load_accumulator(ARG1); jump_if_int32(ARG1, fast_case); native_call((void*)cxx_to_numeric); store_accumulator(RET); check_exception(); fast_case.link(m_assembler); } static Value cxx_resolve_this_binding(VM& vm) { auto this_value = TRY_OR_SET_EXCEPTION(vm.resolve_this_binding()); vm.bytecode_interpreter().reg(Bytecode::Register::this_value()) = this_value; return this_value; } void Compiler::compile_resolve_this_binding(Bytecode::Op::ResolveThisBinding const&) { // OPTIMIZATION: We cache the `this` value in a special VM register. // So first we check if the cache is non-empty, and if so, // we can avoid calling out to C++ at all. :^) load_vm_register(GPR0, Bytecode::Register::this_value()); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(Value().encoded())); Assembler::Label slow_case {}; m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Register(GPR1), slow_case); // Fast case: We have a cached `this` value! store_accumulator(GPR0); auto end = m_assembler.jump(); slow_case.link(m_assembler); native_call((void*)cxx_resolve_this_binding); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_put_by_id(VM& vm, Value base, DeprecatedFlyString const& property, Value value, Bytecode::Op::PropertyKind kind, Bytecode::PropertyLookupCache& cache) { TRY_OR_SET_EXCEPTION(Bytecode::put_by_property_key(vm, base, base, value, property, kind, &cache)); return value; } void Compiler::extract_object_pointer(Assembler::Reg dst_object, Assembler::Reg src_value) { // This is basically Value::as_object() where src_value is the Value. m_assembler.mov( Assembler::Operand::Register(dst_object), Assembler::Operand::Register(src_value)); m_assembler.shift_left( Assembler::Operand::Register(dst_object), Assembler::Operand::Imm(16)); m_assembler.arithmetic_right_shift( Assembler::Operand::Register(dst_object), Assembler::Operand::Imm(16)); } void Compiler::compile_put_by_id(Bytecode::Op::PutById const& op) { auto& cache = m_bytecode_executable.property_lookup_caches[op.cache_index()]; load_vm_register(ARG1, op.base()); m_assembler.mov( Assembler::Operand::Register(ARG5), Assembler::Operand::Imm(bit_cast(&cache))); Assembler::Label end; Assembler::Label slow_case; if (op.kind() == Bytecode::Op::PropertyKind::KeyValue) { branch_if_object(ARG1, [&] { extract_object_pointer(GPR0, ARG1); // if (cache.shape != &object->shape()) goto slow_case; m_assembler.mov( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::shape_offset())); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(ARG5, Bytecode::PropertyLookupCache::shape_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR1, AK::WeakLink::ptr_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR2), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR1), slow_case); // (!object->shape().is_unique() || object->shape().unique_shape_serial_number() == cache.unique_shape_serial_number)) { Assembler::Label fast_case; // GPR1 = object->shape().is_unique() m_assembler.mov8( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR2, Shape::is_unique_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), fast_case); // GPR1 = object->shape().unique_shape_serial_number() m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR2, Shape::unique_shape_serial_number_offset())); // GPR2 = cache.unique_shape_serial_number m_assembler.mov( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(ARG5, Bytecode::PropertyLookupCache::unique_shape_serial_number_offset())); // if (GPR1 != GPR2) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR2), slow_case); fast_case.link(m_assembler); // object->put_direct(*cache.property_offset, value); // GPR0 = object // GPR1 = *cache.property_offset * sizeof(Value) m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(ARG5, Bytecode::PropertyLookupCache::property_offset_offset() + decltype(cache.property_offset)::value_offset())); m_assembler.mul32( Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(sizeof(Value)), slow_case); // GPR0 = object->m_storage.outline_buffer m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::storage_offset() + Vector::outline_buffer_offset())); // GPR0 = &object->m_storage.outline_buffer[*cache.property_offset] m_assembler.add( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR1)); // *GPR0 = value load_accumulator(GPR1); m_assembler.mov( Assembler::Operand::Mem64BaseAndOffset(GPR0, 0), Assembler::Operand::Register(GPR1)); m_assembler.jump(end); }); } slow_case.link(m_assembler); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.property())))); load_accumulator(ARG3); m_assembler.mov( Assembler::Operand::Register(ARG4), Assembler::Operand::Imm(to_underlying(op.kind()))); native_call((void*)cxx_put_by_id); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_put_by_value(VM& vm, Value base, Value property, Value value, Bytecode::Op::PropertyKind kind) { TRY_OR_SET_EXCEPTION(Bytecode::put_by_value(vm, base, property, value, kind)); return value; } void Compiler::compile_put_by_value(Bytecode::Op::PutByValue const& op) { load_vm_register(ARG1, op.base()); load_vm_register(ARG2, op.property()); Assembler::Label end {}; Assembler::Label slow_case {}; branch_if_object(ARG1, [&] { branch_if_int32(ARG2, [&] { // if (ARG2 < 0) goto slow_case; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(ARG2)); m_assembler.sign_extend_32_to_64_bits(GPR0); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::SignedLessThan, Assembler::Operand::Imm(0), slow_case); // GPR0 = extract_pointer(ARG1) extract_object_pointer(GPR0, ARG1); // if (object->may_interfere_with_indexed_property_access()) goto slow_case; m_assembler.mov8( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::may_interfere_with_indexed_property_access_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::NotEqualTo, Assembler::Operand::Imm(0), slow_case); // GPR0 = object->indexed_properties().storage() m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, Object::indexed_properties_offset() + IndexedProperties::storage_offset())); // if (GPR0 == nullptr) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); // if (!GPR0->is_simple_storage()) goto slow_case; m_assembler.mov8( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, IndexedPropertyStorage::is_simple_storage_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), slow_case); // GPR2 = extract_int32(ARG2) m_assembler.mov32( Assembler::Operand::Register(GPR2), Assembler::Operand::Register(ARG2)); // if (GPR2 >= GPR0->array_like_size()) goto slow_case; m_assembler.mov( Assembler::Operand::Register(GPR1), Assembler::Operand::Mem64BaseAndOffset(GPR0, SimpleIndexedPropertyStorage::array_size_offset())); m_assembler.jump_if( Assembler::Operand::Register(GPR2), Assembler::Condition::SignedGreaterThanOrEqualTo, Assembler::Operand::Register(GPR1), slow_case); // GPR0 = GPR0->elements().outline_buffer() m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, SimpleIndexedPropertyStorage::elements_offset() + Vector::outline_buffer_offset())); // GPR2 *= sizeof(Value) m_assembler.mul32( Assembler::Operand::Register(GPR2), Assembler::Operand::Imm(sizeof(Value)), slow_case); // GPR0 = &GRP0[GPR2] // GPR2 = *GPR0 m_assembler.add( Assembler::Operand::Register(GPR0), Assembler::Operand::Register(GPR2)); m_assembler.mov( Assembler::Operand::Register(GPR2), Assembler::Operand::Mem64BaseAndOffset(GPR0, 0)); // if (GPR2.is_accessor()) goto slow_case; m_assembler.mov(Assembler::Operand::Register(GPR1), Assembler::Operand::Register(GPR2)); m_assembler.shift_right(Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(TAG_SHIFT)); m_assembler.jump_if( Assembler::Operand::Register(GPR1), Assembler::Condition::EqualTo, Assembler::Operand::Imm(ACCESSOR_TAG), slow_case); // GRP1 will clobber ARG3 in X86, so load it later. load_accumulator(ARG3); // *GPR0 = value m_assembler.mov( Assembler::Operand::Mem64BaseAndOffset(GPR0, 0), Assembler::Operand::Register(ARG3)); // accumulator = ARG3; store_accumulator(ARG3); m_assembler.jump(end); }); }); slow_case.link(m_assembler); load_accumulator(ARG3); m_assembler.mov( Assembler::Operand::Register(ARG4), Assembler::Operand::Imm(to_underlying(op.kind()))); native_call((void*)cxx_put_by_value); store_accumulator(RET); check_exception(); end.link(m_assembler); } static Value cxx_call(VM& vm, Value callee, u32 first_argument_index, u32 argument_count, Value this_value, Bytecode::Op::CallType call_type, Optional const& expression_string) { TRY_OR_SET_EXCEPTION(throw_if_needed_for_call(vm.bytecode_interpreter(), callee, call_type, expression_string)); MarkedVector argument_values(vm.heap()); argument_values.ensure_capacity(argument_count); for (u32 i = 0; i < argument_count; ++i) { argument_values.unchecked_append(vm.bytecode_interpreter().reg(Bytecode::Register { first_argument_index + i })); } return TRY_OR_SET_EXCEPTION(perform_call(vm.bytecode_interpreter(), this_value, call_type, callee, move(argument_values))); } Assembler::Reg Compiler::argument_register(u32 index) { switch (index) { case 0: return ARG0; case 1: return ARG1; case 2: return ARG2; case 3: return ARG3; case 4: return ARG4; case 5: return ARG5; } VERIFY_NOT_REACHED(); } void Compiler::compile_call(Bytecode::Op::Call const& op) { Assembler::Label slow_case {}; Assembler::Label end {}; load_vm_register(ARG1, op.callee()); if (op.call_type() == Bytecode::Op::CallType::Call && op.builtin().has_value() && op.argument_count() == Bytecode::builtin_argument_count(op.builtin().value())) { auto builtin = op.builtin().value(); // GPR0 = vm.running_execution_context().realm; m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(RUNNING_EXECUTION_CONTEXT_BASE, ExecutionContext::realm_offset())); // GPR0 = GPR0->m_builtins[to_underlying(builtin)] m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Mem64BaseAndOffset(GPR0, Realm::builtins_offset() + sizeof(Value) * to_underlying(builtin))); // if (callee != GPR0) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(ARG1), Assembler::Condition::NotEqualTo, Assembler::Operand::Register(GPR0), slow_case); // Load arguments into ARG2, ARG3, ... for (u32 arg = 0; arg < op.argument_count(); arg++) load_vm_register(argument_register(arg + 2), Bytecode::Register { op.first_argument().index() + arg }); compile_builtin(builtin, slow_case, end); } slow_case.link(m_assembler); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(op.first_argument().index())); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(op.argument_count())); load_vm_register(ARG4, op.this_value()); m_assembler.mov( Assembler::Operand::Register(ARG5), Assembler::Operand::Imm(to_underlying(op.call_type()))); m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(bit_cast(&op.expression_string()))); native_call((void*)cxx_call, { Assembler::Operand::Register(GPR0) }); store_accumulator(RET); check_exception(); end.link(m_assembler); } void Compiler::compile_builtin(Bytecode::Builtin builtin, Assembler::Label& slow_case, Assembler::Label& end) { switch (builtin) { # define DEFINE_BUILTIN_CASE(name, snake_case_name, ...) \ case Bytecode::Builtin::name: \ compile_builtin_##snake_case_name(slow_case, end); \ break; JS_ENUMERATE_BUILTINS(DEFINE_BUILTIN_CASE) # undef DEFINE_BUILTIN_CASE case Bytecode::Builtin::__Count: VERIFY_NOT_REACHED(); } } void Compiler::compile_builtin_math_abs(Assembler::Label& slow_case, Assembler::Label& end) { branch_if_int32(ARG2, [&] { // ARG2 &= 0xffffffff m_assembler.mov32(Assembler::Operand::Register(ARG2), Assembler::Operand::Register(ARG2), Assembler::Extension::SignExtend); // if (ARG2 == INT32_MIN) goto slow_case; m_assembler.jump_if( Assembler::Operand::Register(ARG2), Assembler::Condition::EqualTo, Assembler::Operand::Imm(NumericLimits::min()), slow_case); // accumulator = ARG2 < 0 ? -ARG2 : ARG2; m_assembler.mov(Assembler::Operand::Register(CACHED_ACCUMULATOR), Assembler::Operand::Register(ARG2)); m_assembler.neg32(Assembler::Operand::Register(CACHED_ACCUMULATOR)); m_assembler.mov_if(Assembler::Condition::SignedLessThan, Assembler::Operand::Register(CACHED_ACCUMULATOR), Assembler::Operand::Register(ARG2)); // accumulator |= SHIFTED_INT32_TAG; m_assembler.mov(Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(SHIFTED_INT32_TAG)); m_assembler.bitwise_or(Assembler::Operand::Register(CACHED_ACCUMULATOR), Assembler::Operand::Register(GPR0)); m_assembler.jump(end); }); // if (ARG2.is_double()) goto slow_case; m_assembler.mov(Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(CANON_NAN_BITS)); jump_if_not_double(ARG2, GPR0, GPR1, slow_case); // accumulator = ARG2 & 0x7fffffffffffffff m_assembler.mov(Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(0x7fffffffffffffff)); m_assembler.bitwise_and(Assembler::Operand::Register(ARG2), Assembler::Operand::Register(GPR0)); store_accumulator(ARG2); m_assembler.jump(end); } static Value cxx_call_with_argument_array(VM& vm, Value arguments, Value callee, Value this_value, Bytecode::Op::CallType call_type, Optional const& expression_string) { TRY_OR_SET_EXCEPTION(throw_if_needed_for_call(vm.bytecode_interpreter(), callee, call_type, expression_string)); auto argument_values = Bytecode::argument_list_evaluation(vm, arguments); return TRY_OR_SET_EXCEPTION(perform_call(vm.bytecode_interpreter(), this_value, call_type, callee, move(argument_values))); } void Compiler::compile_call_with_argument_array(Bytecode::Op::CallWithArgumentArray const& op) { load_accumulator(ARG1); load_vm_register(ARG2, op.callee()); load_vm_register(ARG3, op.this_value()); m_assembler.mov( Assembler::Operand::Register(ARG4), Assembler::Operand::Imm(to_underlying(op.call_type()))); m_assembler.mov( Assembler::Operand::Register(ARG5), Assembler::Operand::Imm(bit_cast(&op.expression_string()))); native_call((void*)cxx_call_with_argument_array); store_accumulator(RET); check_exception(); } static Value cxx_typeof_variable(VM& vm, DeprecatedFlyString const& identifier) { return TRY_OR_SET_EXCEPTION(Bytecode::typeof_variable(vm, identifier)); } void Compiler::compile_typeof_variable(Bytecode::Op::TypeofVariable const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.identifier().value())))); native_call((void*)cxx_typeof_variable); store_accumulator(RET); check_exception(); } static Value cxx_create_variable( VM& vm, DeprecatedFlyString const& name, Bytecode::Op::EnvironmentMode mode, bool is_global, bool is_immutable, bool is_strict) { TRY_OR_SET_EXCEPTION(Bytecode::create_variable(vm, name, mode, is_global, is_immutable, is_strict)); return {}; } void Compiler::compile_create_variable(Bytecode::Op::CreateVariable const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.identifier().value())))); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(to_underlying(op.mode()))); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(static_cast(op.is_global()))); m_assembler.mov( Assembler::Operand::Register(ARG4), Assembler::Operand::Imm(static_cast(op.is_immutable()))); m_assembler.mov( Assembler::Operand::Register(ARG5), Assembler::Operand::Imm(static_cast(op.is_strict()))); native_call((void*)cxx_create_variable); check_exception(); } static Value cxx_set_variable( VM& vm, DeprecatedFlyString const& identifier, Value value, Bytecode::Op::EnvironmentMode environment_mode, Bytecode::Op::SetVariable::InitializationMode initialization_mode) { TRY_OR_SET_EXCEPTION(Bytecode::set_variable(vm, identifier, value, environment_mode, initialization_mode)); return {}; } void Compiler::compile_set_variable(Bytecode::Op::SetVariable const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.identifier().value())))); load_accumulator(ARG2); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(to_underlying(op.mode()))); m_assembler.mov( Assembler::Operand::Register(ARG4), Assembler::Operand::Imm(to_underlying(op.initialization_mode()))); native_call((void*)cxx_set_variable); check_exception(); } void Compiler::compile_continue_pending_unwind(Bytecode::Op::ContinuePendingUnwind const& op) { // re-throw the exception if we reached the end of the finally block and there was no catch block to handle it load_vm_register(GPR0, Bytecode::Register::saved_exception()); store_vm_register(Bytecode::Register::exception(), GPR0); m_assembler.mov(Assembler::Operand::Register(GPR1), Assembler::Operand::Imm(Value().encoded())); store_vm_register(Bytecode::Register::saved_exception(), GPR1); check_exception(); // if (saved_return_value.is_empty()) goto resume_block; load_vm_register(GPR0, Bytecode::Register::saved_return_value()); m_assembler.jump_if( Assembler::Operand::Register(GPR0), Assembler::Condition::EqualTo, Assembler::Operand::Register(GPR1), label_for(op.resume_target().block())); // finish the pending return from the try block store_vm_register(Bytecode::Register::return_value(), GPR0); jump_to_exit(); } static void cxx_create_lexical_environment(VM& vm) { auto make_and_swap_envs = [&](auto& old_environment) { GCPtr environment = new_declarative_environment(*old_environment).ptr(); swap(old_environment, environment); return environment; }; vm.bytecode_interpreter().saved_lexical_environment_stack().append(make_and_swap_envs(vm.running_execution_context().lexical_environment)); } void Compiler::compile_create_lexical_environment(Bytecode::Op::CreateLexicalEnvironment const&) { native_call((void*)cxx_create_lexical_environment); } static void cxx_leave_lexical_environment(VM& vm) { vm.running_execution_context().lexical_environment = vm.bytecode_interpreter().saved_lexical_environment_stack().take_last(); } void Compiler::compile_leave_lexical_environment(Bytecode::Op::LeaveLexicalEnvironment const&) { native_call((void*)cxx_leave_lexical_environment); } static Value cxx_enter_object_environment(VM& vm, Value value) { auto object = TRY_OR_SET_EXCEPTION(value.to_object(vm)); vm.bytecode_interpreter().enter_object_environment(*object); return {}; } void Compiler::compile_enter_object_environment(Bytecode::Op::EnterObjectEnvironment const&) { load_accumulator(ARG1); native_call((void*)cxx_enter_object_environment); check_exception(); } static Value cxx_concat_string(VM& vm, Value lhs, Value rhs) { auto string = TRY_OR_SET_EXCEPTION(rhs.to_primitive_string(vm)); return PrimitiveString::create(vm, lhs.as_string(), string); } void Compiler::compile_concat_string(Bytecode::Op::ConcatString const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); native_call((void*)cxx_concat_string); store_vm_register(op.lhs(), RET); check_exception(); } static void cxx_block_declaration_instantiation(VM& vm, ScopeNode const& scope_node) { auto old_environment = vm.running_execution_context().lexical_environment; vm.bytecode_interpreter().saved_lexical_environment_stack().append(old_environment); vm.running_execution_context().lexical_environment = new_declarative_environment(*old_environment); scope_node.block_declaration_instantiation(vm, vm.running_execution_context().lexical_environment); } void Compiler::compile_block_declaration_instantiation(Bytecode::Op::BlockDeclarationInstantiation const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&op.scope_node()))); native_call((void*)cxx_block_declaration_instantiation); } static Value cxx_super_call_with_argument_array(VM& vm, Value argument_array, bool is_synthetic) { return TRY_OR_SET_EXCEPTION(Bytecode::super_call_with_argument_array(vm, argument_array, is_synthetic)); } void Compiler::compile_super_call_with_argument_array(Bytecode::Op::SuperCallWithArgumentArray const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(static_cast(op.is_synthetic()))); native_call((void*)cxx_super_call_with_argument_array); store_accumulator(RET); check_exception(); } static Value cxx_get_iterator(VM& vm, Value value, IteratorHint hint) { auto iterator = TRY_OR_SET_EXCEPTION(get_iterator(vm, value, hint)); return Bytecode::iterator_to_object(vm, iterator); } void Compiler::compile_get_iterator(Bytecode::Op::GetIterator const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(to_underlying(op.hint()))); native_call((void*)cxx_get_iterator); store_accumulator(RET); check_exception(); } static Value cxx_iterator_next(VM& vm, Value iterator) { auto iterator_object = TRY_OR_SET_EXCEPTION(iterator.to_object(vm)); auto iterator_record = Bytecode::object_to_iterator(vm, iterator_object); return TRY_OR_SET_EXCEPTION(iterator_next(vm, iterator_record)); } void Compiler::compile_iterator_next(Bytecode::Op::IteratorNext const&) { load_accumulator(ARG1); native_call((void*)cxx_iterator_next); store_accumulator(RET); check_exception(); } static Value cxx_iterator_result_done(VM& vm, Value iterator) { auto iterator_result = TRY_OR_SET_EXCEPTION(iterator.to_object(vm)); return Value(TRY_OR_SET_EXCEPTION(iterator_complete(vm, iterator_result))); } void Compiler::compile_iterator_result_done(Bytecode::Op::IteratorResultDone const&) { load_accumulator(ARG1); native_call((void*)cxx_iterator_result_done); store_accumulator(RET); check_exception(); } static Value cxx_throw_if_not_object(VM& vm, Value value) { if (!value.is_object()) TRY_OR_SET_EXCEPTION(vm.throw_completion(ErrorType::NotAnObject, value.to_string_without_side_effects())); return {}; } void Compiler::compile_throw_if_not_object(Bytecode::Op::ThrowIfNotObject const&) { load_accumulator(ARG1); native_call((void*)cxx_throw_if_not_object); check_exception(); } static Value cxx_throw_if_nullish(VM& vm, Value value) { if (value.is_nullish()) TRY_OR_SET_EXCEPTION(vm.throw_completion(ErrorType::NotObjectCoercible, value.to_string_without_side_effects())); return {}; } void Compiler::compile_throw_if_nullish(Bytecode::Op::ThrowIfNullish const&) { load_accumulator(ARG1); native_call((void*)cxx_throw_if_nullish); check_exception(); } static Value cxx_iterator_result_value(VM& vm, Value iterator) { auto iterator_result = TRY_OR_SET_EXCEPTION(iterator.to_object(vm)); return TRY_OR_SET_EXCEPTION(iterator_value(vm, iterator_result)); } void Compiler::compile_iterator_result_value(Bytecode::Op::IteratorResultValue const&) { load_accumulator(ARG1); native_call((void*)cxx_iterator_result_value); store_accumulator(RET); check_exception(); } static Value cxx_iterator_close(VM& vm, Value iterator, Completion::Type completion_type, Optional const& completion_value) { auto iterator_object = TRY_OR_SET_EXCEPTION(iterator.to_object(vm)); auto iterator_record = Bytecode::object_to_iterator(vm, iterator_object); // FIXME: Return the value of the resulting completion. (Note that m_completion_value can be empty!) TRY_OR_SET_EXCEPTION(iterator_close(vm, iterator_record, Completion { completion_type, completion_value, {} })); return {}; } void Compiler::compile_iterator_close(Bytecode::Op::IteratorClose const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(to_underlying(op.completion_type()))); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(bit_cast(&op.completion_value()))); native_call((void*)cxx_iterator_close); check_exception(); } static Value iterator_to_array(VM& vm, Value iterator) { return TRY_OR_SET_EXCEPTION(Bytecode::iterator_to_array(vm, iterator)); } void Compiler::compile_iterator_to_array(Bytecode::Op::IteratorToArray const&) { load_accumulator(ARG1); native_call((void*)iterator_to_array); store_accumulator(RET); check_exception(); } static Value cxx_append(VM& vm, Value lhs, Value rhs, bool is_spread) { TRY_OR_SET_EXCEPTION(Bytecode::append(vm, lhs, rhs, is_spread)); return {}; } void Compiler::compile_append(Bytecode::Op::Append const& op) { load_vm_register(ARG1, op.lhs()); load_accumulator(ARG2); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(static_cast(op.is_spread()))); native_call((void*)cxx_append); check_exception(); } static Value cxx_delete_by_id(VM& vm, Value base, Bytecode::IdentifierTableIndex property) { return TRY_OR_SET_EXCEPTION(Bytecode::delete_by_id(vm.bytecode_interpreter(), base, property)); } void Compiler::compile_delete_by_id(Bytecode::Op::DeleteById const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(op.property().value())); native_call((void*)cxx_delete_by_id); store_accumulator(RET); check_exception(); } static Value cxx_delete_by_value(VM& vm, Value base_value, Value property_key_value) { return TRY_OR_SET_EXCEPTION(Bytecode::delete_by_value(vm.bytecode_interpreter(), base_value, property_key_value)); } void Compiler::compile_delete_by_value(Bytecode::Op::DeleteByValue const& op) { load_vm_register(ARG1, op.base()); load_accumulator(ARG2); native_call((void*)cxx_delete_by_value); store_accumulator(RET); check_exception(); } static Value cxx_delete_by_value_with_this(VM& vm, Value base_value, Value property_key_value, Value this_value) { return TRY_OR_SET_EXCEPTION(Bytecode::delete_by_value_with_this(vm.bytecode_interpreter(), base_value, property_key_value, this_value)); } void Compiler::compile_delete_by_value_with_this(Bytecode::Op::DeleteByValueWithThis const& op) { load_vm_register(ARG1, op.base()); load_accumulator(ARG2); load_vm_register(ARG3, op.this_value()); native_call((void*)cxx_delete_by_value_with_this); store_accumulator(RET); check_exception(); } static Value cxx_get_object_property_iterator(VM& vm, Value object) { return TRY_OR_SET_EXCEPTION(Bytecode::get_object_property_iterator(vm, object)); } void Compiler::compile_get_object_property_iterator(Bytecode::Op::GetObjectPropertyIterator const&) { load_accumulator(ARG1); native_call((void*)cxx_get_object_property_iterator); store_accumulator(RET); check_exception(); } static Value cxx_get_private_by_id(VM& vm, Value base_value, DeprecatedFlyString& name) { auto private_reference = make_private_reference(vm, base_value, name); return TRY_OR_SET_EXCEPTION(private_reference.get_value(vm)); } void Compiler::compile_get_private_by_id(Bytecode::Op::GetPrivateById const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.property())))); native_call((void*)cxx_get_private_by_id); store_accumulator(RET); check_exception(); } static Value cxx_resolve_super_base(VM& vm) { // 1. Let env be GetThisEnvironment(). auto& env = verify_cast(*get_this_environment(vm)); // 2. Assert: env.HasSuperBinding() is true. VERIFY(env.has_super_binding()); // 3. Let baseValue be ? env.GetSuperBase(). return TRY_OR_SET_EXCEPTION(env.get_super_base()); } void Compiler::compile_resolve_super_base(Bytecode::Op::ResolveSuperBase const&) { native_call((void*)cxx_resolve_super_base); store_accumulator(RET); check_exception(); } static Value cxx_get_by_id_with_this(VM& vm, DeprecatedFlyString const& property, Value base_value, Value this_value, Bytecode::PropertyLookupCache& cache) { return TRY_OR_SET_EXCEPTION(Bytecode::get_by_id(vm, property, base_value, this_value, cache)); } void Compiler::compile_get_by_id_with_this(Bytecode::Op::GetByIdWithThis const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.property())))); load_accumulator(ARG2); load_vm_register(ARG3, op.this_value()); m_assembler.mov( Assembler::Operand::Register(ARG4), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.property_lookup_caches[op.cache_index()]))); native_call((void*)cxx_get_by_id_with_this); store_accumulator(RET); check_exception(); } static Value cxx_get_by_value_with_this(VM& vm, Value property_key_value, Value base, Value this_value) { auto object = TRY_OR_SET_EXCEPTION(base.to_object(vm)); auto property_key = TRY_OR_SET_EXCEPTION(property_key_value.to_property_key(vm)); return TRY_OR_SET_EXCEPTION(object->internal_get(property_key, this_value)); } void Compiler::compile_get_by_value_with_this(Bytecode::Op::GetByValueWithThis const& op) { load_accumulator(ARG1); load_vm_register(ARG2, op.base()); load_vm_register(ARG3, op.this_value()); native_call((void*)cxx_get_by_value_with_this); store_accumulator(RET); check_exception(); } static Value cxx_delete_by_id_with_this(VM& vm, Value base_value, DeprecatedFlyString const& identifier, Value this_value) { auto reference = Reference { base_value, identifier, this_value, vm.in_strict_mode() }; return Value(TRY_OR_SET_EXCEPTION(reference.delete_(vm))); } void Compiler::compile_delete_by_id_with_this(Bytecode::Op::DeleteByIdWithThis const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.property())))); load_vm_register(ARG3, op.this_value()); native_call((void*)cxx_delete_by_id_with_this); store_accumulator(RET); } static Value cxx_put_by_id_with_this(VM& vm, Value base, Value value, DeprecatedFlyString const& name, Value this_value, Bytecode::Op::PropertyKind kind, Bytecode::PropertyLookupCache& cache) { TRY_OR_SET_EXCEPTION(Bytecode::put_by_property_key(vm, base, this_value, value, name, kind, &cache)); return {}; } void Compiler::compile_put_by_id_with_this(Bytecode::Op::PutByIdWithThis const& op) { load_vm_register(ARG1, op.base()); load_accumulator(ARG2); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.property())))); load_vm_register(ARG4, op.this_value()); m_assembler.mov( Assembler::Operand::Register(ARG5), Assembler::Operand::Imm(to_underlying(op.kind()))); m_assembler.mov( Assembler::Operand::Register(GPR0), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.property_lookup_caches[op.cache_index()]))); native_call((void*)cxx_put_by_id_with_this, { Assembler::Operand::Register(GPR0) }); check_exception(); } static Value cxx_put_private_by_id(VM& vm, Value base, Value value, DeprecatedFlyString const& name) { auto object = TRY_OR_SET_EXCEPTION(base.to_object(vm)); auto private_reference = make_private_reference(vm, object, name); TRY_OR_SET_EXCEPTION(private_reference.put_value(vm, value)); return value; } void Compiler::compile_put_private_by_id(Bytecode::Op::PutPrivateById const& op) { load_vm_register(ARG1, op.base()); load_accumulator(ARG2); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.property())))); native_call((void*)cxx_put_private_by_id); store_accumulator(RET); check_exception(); } static Value cxx_import_call(VM& vm, Value specifier, Value options) { return TRY_OR_SET_EXCEPTION(perform_import_call(vm, specifier, options)); } void Compiler::compile_import_call(Bytecode::Op::ImportCall const& op) { load_vm_register(ARG1, op.specifier()); load_vm_register(ARG2, op.options()); native_call((void*)cxx_import_call); store_accumulator(RET); check_exception(); } static Value cxx_get_import_meta(VM& vm) { return vm.get_import_meta(); } void Compiler::compile_get_import_meta(Bytecode::Op::GetImportMeta const&) { native_call((void*)cxx_get_import_meta); store_accumulator(RET); } static Value cxx_delete_variable(VM& vm, DeprecatedFlyString const& identifier) { auto reference = TRY_OR_SET_EXCEPTION(vm.resolve_binding(identifier)); return Value(TRY_OR_SET_EXCEPTION(reference.delete_(vm))); } void Compiler::compile_delete_variable(Bytecode::Op::DeleteVariable const& op) { m_assembler.mov( Assembler::Operand::Register(ARG1), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.identifier().value())))); native_call((void*)cxx_delete_variable); store_accumulator(RET); check_exception(); } static Value cxx_get_method(VM& vm, Value value, DeprecatedFlyString const& identifier) { auto method = TRY_OR_SET_EXCEPTION(value.get_method(vm, identifier)); return method ?: js_undefined(); } void Compiler::compile_get_method(Bytecode::Op::GetMethod const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.property())))); native_call((void*)cxx_get_method); store_accumulator(RET); check_exception(); } static Value cxx_get_new_target(VM& vm) { return vm.get_new_target(); } void Compiler::compile_get_new_target(Bytecode::Op::GetNewTarget const&) { native_call((void*)cxx_get_new_target); store_accumulator(RET); } static Value cxx_has_private_id(VM& vm, Value object, DeprecatedFlyString const& identifier) { if (!object.is_object()) TRY_OR_SET_EXCEPTION(vm.throw_completion(ErrorType::InOperatorWithObject)); auto private_environment = vm.running_execution_context().private_environment; VERIFY(private_environment); auto private_name = private_environment->resolve_private_identifier(identifier); return Value(object.as_object().private_element_find(private_name) != nullptr); } void Compiler::compile_has_private_id(Bytecode::Op::HasPrivateId const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_identifier(op.property())))); native_call((void*)cxx_has_private_id); store_accumulator(RET); check_exception(); } # define COMPILE_NEW_BUILTIN_ERROR_OP(NewErrorName, new_error_name, ErrorName) \ static Value cxx_##new_error_name(VM& vm, DeprecatedString const& error_string) \ { \ return ErrorName::create(*vm.current_realm(), error_string); \ } \ \ void Compiler::compile_##new_error_name(Bytecode::Op::NewErrorName const& op) \ { \ m_assembler.mov( \ Assembler::Operand::Register(ARG1), \ Assembler::Operand::Imm(bit_cast(&m_bytecode_executable.get_string(op.error_string())))); \ native_call((void*)cxx_##new_error_name); \ store_accumulator(RET); \ } JS_ENUMERATE_NEW_BUILTIN_ERROR_BYTECODE_OPS(COMPILE_NEW_BUILTIN_ERROR_OP) # undef COMPILE_NEW_BUILTIN_ERROR_OP static Value cxx_put_by_value_with_this(VM& vm, Value base, Value value, Value name, Value this_value, Bytecode::Op::PropertyKind kind) { auto property_key = kind != Bytecode::Op::PropertyKind::Spread ? TRY_OR_SET_EXCEPTION(name.to_property_key(vm)) : PropertyKey {}; TRY_OR_SET_EXCEPTION(Bytecode::put_by_property_key(vm, base, this_value, value, property_key, kind)); return value; } void Compiler::compile_put_by_value_with_this(Bytecode::Op::PutByValueWithThis const& op) { load_vm_register(ARG1, op.base()); load_accumulator(ARG2); if (op.kind() != Bytecode::Op::PropertyKind::Spread) { load_vm_register(ARG3, op.property()); } else { m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(Value().encoded())); } load_vm_register(ARG4, op.this_value()); m_assembler.mov( Assembler::Operand::Register(ARG5), Assembler::Operand::Imm(to_underlying(op.kind()))); native_call((void*)cxx_put_by_value_with_this); store_accumulator(RET); check_exception(); } static Value cxx_copy_object_excluding_properties(VM& vm, Value from_object, u64 excluded_names_count, Value* excluded_names) { auto& realm = *vm.current_realm(); auto to_object = Object::create(realm, realm.intrinsics().object_prototype()); HashTable excluded_names_table; for (size_t i = 0; i < excluded_names_count; ++i) { excluded_names_table.set(TRY_OR_SET_EXCEPTION(excluded_names[i].to_property_key(vm))); } TRY_OR_SET_EXCEPTION(to_object->copy_data_properties(vm, from_object, excluded_names_table)); return to_object; } void Compiler::compile_copy_object_excluding_properties(Bytecode::Op::CopyObjectExcludingProperties const& op) { load_vm_register(ARG1, op.from_object()); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(op.excluded_names_count())); // Build `Value arg3[op.excluded_names_count()] {...}` on the stack. auto stack_space = align_up_to(op.excluded_names_count() * sizeof(Value), 16); m_assembler.sub(Assembler::Operand::Register(STACK_POINTER), Assembler::Operand::Imm(stack_space)); m_assembler.mov(Assembler::Operand::Register(ARG3), Assembler::Operand::Register(STACK_POINTER)); for (size_t i = 0; i < op.excluded_names_count(); ++i) { load_vm_register(GPR0, op.excluded_names()[i]); m_assembler.mov(Assembler::Operand::Mem64BaseAndOffset(ARG3, i * sizeof(Value)), Assembler::Operand::Register(GPR0)); } native_call((void*)cxx_copy_object_excluding_properties); // Restore the stack pointer / discard array. m_assembler.add(Assembler::Operand::Register(STACK_POINTER), Assembler::Operand::Imm(stack_space)); store_accumulator(RET); check_exception(); } static Value cxx_async_iterator_close(VM& vm, Value iterator, Completion::Type completion_type, Optional const& completion_value) { auto iterator_object = TRY_OR_SET_EXCEPTION(iterator.to_object(vm)); auto iterator_record = Bytecode::object_to_iterator(vm, iterator_object); // FIXME: Return the value of the resulting completion. (Note that completion_value can be empty!) TRY_OR_SET_EXCEPTION(async_iterator_close(vm, iterator_record, Completion { completion_type, completion_value, {} })); return {}; } void Compiler::compile_async_iterator_close(Bytecode::Op::AsyncIteratorClose const& op) { load_accumulator(ARG1); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(to_underlying(op.completion_type()))); m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(bit_cast(&op.completion_value()))); native_call((void*)cxx_async_iterator_close); check_exception(); } static Value cxx_continuation(VM& vm, Value value, Value continuation, Value is_await) { auto object = Object::create(*vm.current_realm(), nullptr); object->define_direct_property("result", value.value_or(js_undefined()), JS::default_attributes); object->define_direct_property("continuation", continuation, JS::default_attributes); object->define_direct_property("isAwait", is_await, JS::default_attributes); return object; } void Compiler::compile_continuation(Optional continuation, bool is_await) { load_accumulator(ARG1); if (continuation.has_value()) { // FIXME: If we get a pointer, which is not accurately representable as a double // will cause this to explode auto continuation_value = Value(static_cast(bit_cast(&continuation->block()))); m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(continuation_value.encoded())); } else { m_assembler.mov( Assembler::Operand::Register(ARG2), Assembler::Operand::Imm(Value(0).encoded())); } m_assembler.mov( Assembler::Operand::Register(ARG3), Assembler::Operand::Imm(Value(is_await).encoded())); native_call((void*)cxx_continuation); store_vm_register(Bytecode::Register::return_value(), RET); // FIXME: This should run the finalizer if it is a return jump_to_exit(); } void Compiler::compile_yield(Bytecode::Op::Yield const& op) { compile_continuation(op.continuation(), false); } void Compiler::compile_await(Bytecode::Op::Await const& op) { compile_continuation(op.continuation(), true); } void Compiler::jump_to_exit() { m_assembler.jump(m_exit_label); } void Compiler::native_call(void* function_address, Vector const& stack_arguments) { // NOTE: We don't preserve caller-saved registers when making a native call. // This means that they may have changed after we return from the call. m_assembler.native_call(bit_cast(function_address), { Assembler::Operand::Register(ARG0) }, stack_arguments); } OwnPtr Compiler::compile(Bytecode::Executable& bytecode_executable) { if (!getenv("LIBJS_JIT")) return nullptr; Compiler compiler { bytecode_executable }; Vector mapping; mapping.append({ .native_offset = compiler.m_output.size(), .block_index = BytecodeMapping::EXECUTABLE, .bytecode_offset = 0, }); compiler.m_assembler.enter(); compiler.m_assembler.mov( Assembler::Operand::Register(REGISTER_ARRAY_BASE), Assembler::Operand::Register(ARG1)); compiler.m_assembler.mov( Assembler::Operand::Register(LOCALS_ARRAY_BASE), Assembler::Operand::Register(ARG2)); compiler.m_assembler.mov( Assembler::Operand::Register(RUNNING_EXECUTION_CONTEXT_BASE), Assembler::Operand::Register(ARG4)); compiler.reload_cached_accumulator(); Assembler::Label normal_entry {}; compiler.m_assembler.jump_if( Assembler::Operand::Register(ARG3), Assembler::Condition::EqualTo, Assembler::Operand::Imm(0), normal_entry); compiler.m_assembler.jump(Assembler::Operand::Register(ARG3)); normal_entry.link(compiler.m_assembler); for (size_t block_index = 0; block_index < bytecode_executable.basic_blocks.size(); block_index++) { auto& block = bytecode_executable.basic_blocks[block_index]; compiler.block_data_for(*block).start_offset = compiler.m_output.size(); compiler.set_current_block(*block); auto it = Bytecode::InstructionStreamIterator(block->instruction_stream()); if (it.at_end()) { mapping.append({ .native_offset = compiler.m_output.size(), .block_index = block_index, .bytecode_offset = 0, }); } while (!it.at_end()) { auto const& op = *it; mapping.append({ .native_offset = compiler.m_output.size(), .block_index = block_index, .bytecode_offset = it.offset(), }); switch (op.type()) { # define CASE_BYTECODE_OP(OpTitleCase, op_snake_case, ...) \ case Bytecode::Instruction::Type::OpTitleCase: \ compiler.compile_##op_snake_case(static_cast(op)); \ break; JS_ENUMERATE_IMPLEMENTED_JIT_OPS(CASE_BYTECODE_OP) # undef CASE_BYTECODE_OP default: if constexpr (LOG_JIT_FAILURE) { dbgln("\033[31;1mJIT compilation failed\033[0m: {}", bytecode_executable.name); dbgln("Unsupported bytecode op: {}", op.to_deprecated_string(bytecode_executable)); } return nullptr; } ++it; } if (!block->is_terminated()) compiler.jump_to_exit(); } mapping.append({ .native_offset = compiler.m_output.size(), .block_index = BytecodeMapping::EXECUTABLE, .bytecode_offset = 1, }); compiler.m_exit_label.link(compiler.m_assembler); compiler.flush_cached_accumulator(); compiler.m_assembler.exit(); auto* executable_memory = mmap(nullptr, compiler.m_output.size(), PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); if (executable_memory == MAP_FAILED) { dbgln("mmap: {}", strerror(errno)); return nullptr; } for (auto& block : bytecode_executable.basic_blocks) { auto& block_data = compiler.block_data_for(*block); block_data.label.link_to(compiler.m_assembler, block_data.start_offset); } if constexpr (DUMP_JIT_MACHINE_CODE_TO_STDOUT) { (void)write(STDOUT_FILENO, compiler.m_output.data(), compiler.m_output.size()); } memcpy(executable_memory, compiler.m_output.data(), compiler.m_output.size()); if (mprotect(executable_memory, compiler.m_output.size(), PROT_READ | PROT_EXEC) < 0) { dbgln("mprotect: {}", strerror(errno)); return nullptr; } if constexpr (LOG_JIT_SUCCESS) { dbgln("\033[32;1mJIT compilation succeeded!\033[0m {}", bytecode_executable.name); } auto executable = make(executable_memory, compiler.m_output.size(), mapping); if constexpr (DUMP_JIT_DISASSEMBLY) executable->dump_disassembly(bytecode_executable); return executable; } } #endif