/* * Copyright (c) 2020, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include namespace Kernel { #define APIC_TIMER_MEASURE_CPU_CLOCK UNMAP_AFTER_INIT APICTimer* APICTimer::initialize(u8 interrupt_number, HardwareTimerBase& calibration_source) { auto timer = adopt_lock_ref(*new APICTimer(interrupt_number, nullptr)); timer->register_interrupt_handler(); if (!timer->calibrate(calibration_source)) { return nullptr; } return &timer.leak_ref(); } UNMAP_AFTER_INIT APICTimer::APICTimer(u8 interrupt_number, Function callback) : HardwareTimer(interrupt_number, move(callback)) { disable_remap(); } UNMAP_AFTER_INIT bool APICTimer::calibrate(HardwareTimerBase& calibration_source) { VERIFY_INTERRUPTS_DISABLED(); dmesgln("APICTimer: Using {} as calibration source", calibration_source.model()); struct { #ifdef APIC_TIMER_MEASURE_CPU_CLOCK bool supports_tsc { Processor::current().has_feature(CPUFeature::TSC) }; #endif APIC& apic { APIC::the() }; size_t ticks_in_100ms { 0 }; Atomic calibration_ticks { 0 }; #ifdef APIC_TIMER_MEASURE_CPU_CLOCK volatile u64 start_tsc { 0 }, end_tsc { 0 }; #endif volatile u64 start_reference { 0 }, end_reference { 0 }; volatile u32 start_apic_count { 0 }, end_apic_count { 0 }; bool query_reference { false }; } state; state.ticks_in_100ms = calibration_source.ticks_per_second() / 10; state.query_reference = calibration_source.can_query_raw(); // temporarily replace the timer callbacks auto original_source_callback = calibration_source.set_callback([&state, &calibration_source](RegisterState const&) { u32 current_timer_count = state.apic.get_timer_current_count(); #ifdef APIC_TIMER_MEASURE_CPU_CLOCK u64 current_tsc = state.supports_tsc ? read_tsc() : 0; #endif u64 current_reference = state.query_reference ? calibration_source.current_raw() : 0; auto prev_tick = state.calibration_ticks.fetch_add(1); if (prev_tick == 0) { #ifdef APIC_TIMER_MEASURE_CPU_CLOCK state.start_tsc = current_tsc; #endif state.start_apic_count = current_timer_count; state.start_reference = current_reference; } else if (prev_tick + 1 == state.ticks_in_100ms + 1) { #ifdef APIC_TIMER_MEASURE_CPU_CLOCK state.end_tsc = current_tsc; #endif state.end_apic_count = current_timer_count; state.end_reference = current_reference; } }); // Setup a counter that should be much longer than our calibration time. // We don't want the APIC timer to actually fire. We do however want the // calbibration_source timer to fire so that we can read the current // tick count from the APIC timer auto original_callback = set_callback([&](RegisterState const&) { // TODO: How should we handle this? PANIC("APICTimer: Timer fired during calibration!"); }); state.apic.setup_local_timer(0xffffffff, APIC::TimerMode::Periodic, true); sti(); // Loop for about 100 ms while (state.calibration_ticks.load() <= state.ticks_in_100ms) Processor::wait_check(); cli(); // Restore timer callbacks calibration_source.set_callback(move(original_source_callback)); set_callback(move(original_callback)); disable_local_timer(); if (state.query_reference) { u64 one_tick_ns = calibration_source.raw_to_ns((state.end_reference - state.start_reference) / state.ticks_in_100ms); m_frequency = (u32)(1000000000ull / one_tick_ns); dmesgln("APICTimer: Ticks per second: {} ({}.{}ms)", m_frequency, one_tick_ns / 1000000, one_tick_ns % 1000000); } else { // For now, assume the frequency is exactly the same m_frequency = calibration_source.ticks_per_second(); dmesgln("APICTimer: Ticks per second: {} (assume same frequency as reference clock)", m_frequency); } auto delta_apic_count = state.start_apic_count - state.end_apic_count; // The APIC current count register decrements! m_timer_period = (delta_apic_count * state.apic.get_timer_divisor()) / state.ticks_in_100ms; u64 apic_freq = delta_apic_count * state.apic.get_timer_divisor() * 10; dmesgln("APICTimer: Bus clock speed: {}.{} MHz", apic_freq / 1000000, apic_freq % 1000000); if (apic_freq < 1000000) { dmesgln("APICTimer: Frequency too slow!"); return false; } #ifdef APIC_TIMER_MEASURE_CPU_CLOCK if (state.supports_tsc) { auto delta_tsc = (state.end_tsc - state.start_tsc) * 10; dmesgln("APICTimer: CPU clock speed: {}.{} MHz", delta_tsc / 1000000, delta_tsc % 1000000); } #endif enable_local_timer(); return true; } void APICTimer::enable_local_timer() { APIC::the().setup_local_timer(m_timer_period, m_timer_mode, true); } void APICTimer::disable_local_timer() { APIC::the().setup_local_timer(0, APIC::TimerMode::OneShot, false); } size_t APICTimer::ticks_per_second() const { return m_frequency; } void APICTimer::set_periodic() { // FIXME: Implement it... VERIFY_NOT_REACHED(); } void APICTimer::set_non_periodic() { // FIXME: Implement it... VERIFY_NOT_REACHED(); } void APICTimer::reset_to_default_ticks_per_second() { } bool APICTimer::try_to_set_frequency([[maybe_unused]] size_t frequency) { return true; } bool APICTimer::is_capable_of_frequency([[maybe_unused]] size_t frequency) const { return false; } size_t APICTimer::calculate_nearest_possible_frequency([[maybe_unused]] size_t frequency) const { return 0; } }