/* * Copyright (c) 2023, Lucas Chollet * * SPDX-License-Identifier: BSD-2-Clause */ #include "TIFFLoader.h" #include #include #include #include #include #include #include #include #include #include #include namespace Gfx { namespace { CCITT::Group3Options parse_t4_options(u32 bit_field) { // Section 11: CCITT Bilevel Encodings CCITT::Group3Options options {}; if (bit_field & 0b001) options.dimensions = CCITT::Group3Options::Mode::TwoDimensions; if (bit_field & 0b010) options.compression = CCITT::Group3Options::Compression::Uncompressed; if (bit_field & 0b100) options.use_fill_bits = CCITT::Group3Options::UseFillBits::Yes; return options; } } namespace TIFF { class TIFFLoadingContext { public: enum class State { NotDecoded = 0, Error, HeaderDecoded, FrameDecoded, }; TIFFLoadingContext(NonnullOwnPtr stream) : m_stream(move(stream)) { } ErrorOr decode_image_header() { TRY(read_image_file_header()); TRY(read_next_image_file_directory()); m_state = State::HeaderDecoded; return {}; } ErrorOr ensure_conditional_tags_are_present() const { if (m_metadata.photometric_interpretation() == PhotometricInterpretation::RGBPalette && !m_metadata.color_map().has_value()) return Error::from_string_literal("TIFFImageDecoderPlugin: RGBPalette image doesn't contain a color map"); return {}; } Optional> segment_offsets() const { return m_metadata.strip_offsets().has_value() ? m_metadata.strip_offsets() : m_metadata.tile_offsets(); } Optional> segment_byte_counts() const { return m_metadata.strip_byte_counts().has_value() ? m_metadata.strip_byte_counts() : m_metadata.tile_byte_counts(); } bool is_tiled() const { return m_metadata.tile_width().has_value() && m_metadata.tile_length().has_value(); } ErrorOr ensure_baseline_tags_are_correct() const { if (!segment_offsets().has_value()) return Error::from_string_literal("TIFFImageDecoderPlugin: Missing Offsets tag"); if (!segment_byte_counts().has_value()) return Error::from_string_literal("TIFFImageDecoderPlugin: Missing ByteCounts tag"); if (segment_offsets()->size() != segment_byte_counts()->size()) return Error::from_string_literal("TIFFImageDecoderPlugin: StripsOffset and StripByteCount have different sizes"); if (!m_metadata.rows_per_strip().has_value() && segment_byte_counts()->size() != 1 && !is_tiled()) return Error::from_string_literal("TIFFImageDecoderPlugin: RowsPerStrip is not provided and impossible to deduce"); if (any_of(*m_metadata.bits_per_sample(), [](auto bit_depth) { return bit_depth == 0 || bit_depth > 32; })) return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid value in BitsPerSample"); return {}; } void cache_values() { if (m_metadata.photometric_interpretation().has_value()) m_photometric_interpretation = m_metadata.photometric_interpretation().value(); if (m_metadata.bits_per_sample().has_value()) m_bits_per_sample = m_metadata.bits_per_sample().value(); if (m_metadata.image_width().has_value()) m_image_width = m_metadata.image_width().value(); if (m_metadata.predictor().has_value()) m_predictor = m_metadata.predictor().value(); m_alpha_channel_index = alpha_channel_index(); } ErrorOr decode_frame() { TRY(ensure_baseline_tags_are_present(m_metadata)); TRY(ensure_baseline_tags_are_correct()); TRY(ensure_conditional_tags_are_present()); cache_values(); auto maybe_error = decode_frame_impl(); if (maybe_error.is_error()) { m_state = State::Error; return maybe_error.release_error(); } return {}; } IntSize size() const { return ExifOrientedBitmap::oriented_size({ *m_metadata.image_width(), *m_metadata.image_length() }, *m_metadata.orientation()); } ExifMetadata const& metadata() const { return m_metadata; } State state() const { return m_state; } RefPtr cmyk_bitmap() const { return m_cmyk_bitmap; } RefPtr bitmap() const { return m_bitmap; } private: enum class ByteOrder { LittleEndian, BigEndian, }; static ErrorOr read_component(BigEndianInputBitStream& stream, u8 bits) { // FIXME: This function truncates everything to 8-bits auto const value = TRY(stream.read_bits(bits)); if (bits > 8) return value >> (bits - 8); return NumericLimits::max() * value / ((1 << bits) - 1); } u8 samples_for_photometric_interpretation() const { switch (m_photometric_interpretation) { case PhotometricInterpretation::WhiteIsZero: case PhotometricInterpretation::BlackIsZero: case PhotometricInterpretation::RGBPalette: return 1; case PhotometricInterpretation::RGB: return 3; case PhotometricInterpretation::CMYK: return 4; default: TODO(); } } Optional alpha_channel_index() const { if (m_metadata.extra_samples().has_value()) { auto const extra_samples = m_metadata.extra_samples().value(); for (u8 i = 0; i < extra_samples.size(); ++i) { if (extra_samples[i] == ExtraSample::UnassociatedAlpha) return i + samples_for_photometric_interpretation(); } } return OptionalNone {}; } ErrorOr manage_extra_channels(BigEndianInputBitStream& stream) const { // Section 7: Additional Baseline TIFF Requirements // Some TIFF files may have more components per pixel than you think. A Baseline TIFF reader must skip over // them gracefully, using the values of the SamplesPerPixel and BitsPerSample fields. // Both unknown and alpha channels are considered as extra channels, so let's iterate over // them, conserve the alpha value (if any) and discard everything else. auto const number_base_channels = samples_for_photometric_interpretation(); Optional alpha {}; for (u8 i = number_base_channels; i < m_bits_per_sample.size(); ++i) { if (m_alpha_channel_index == i) alpha = TRY(read_component(stream, m_bits_per_sample[i])); else TRY(read_component(stream, m_bits_per_sample[i])); } return alpha.value_or(NumericLimits::max()); } ErrorOr read_color(BigEndianInputBitStream& stream) { if (m_photometric_interpretation == PhotometricInterpretation::RGB) { auto const first_component = TRY(read_component(stream, m_bits_per_sample[0])); auto const second_component = TRY(read_component(stream, m_bits_per_sample[1])); auto const third_component = TRY(read_component(stream, m_bits_per_sample[2])); auto const alpha = TRY(manage_extra_channels(stream)); return Color(first_component, second_component, third_component, alpha); } if (m_photometric_interpretation == PhotometricInterpretation::RGBPalette) { auto const index = TRY(stream.read_bits(m_bits_per_sample[0])); auto const alpha = TRY(manage_extra_channels(stream)); // SamplesPerPixel == 1 is a requirement for RGBPalette // From description of PhotometricInterpretation in Section 8: Baseline Field Reference Guide // "In a TIFF ColorMap, all the Red values come first, followed by the Green values, // then the Blue values." u64 const size = 1ul << m_bits_per_sample[0]; u64 const red_offset = 0 * size; u64 const green_offset = 1 * size; u64 const blue_offset = 2 * size; auto const color_map = *m_metadata.color_map(); if (blue_offset + index >= color_map.size()) return Error::from_string_literal("TIFFImageDecoderPlugin: Color index is out of range"); // FIXME: ColorMap's values are always 16-bits, stop truncating them when we support 16 bits bitmaps return Color( color_map[red_offset + index] >> 8, color_map[green_offset + index] >> 8, color_map[blue_offset + index] >> 8, alpha); } if (m_photometric_interpretation == PhotometricInterpretation::WhiteIsZero || m_photometric_interpretation == PhotometricInterpretation::BlackIsZero) { auto luminosity = TRY(read_component(stream, m_bits_per_sample[0])); if (m_photometric_interpretation == PhotometricInterpretation::WhiteIsZero) luminosity = ~luminosity; auto const alpha = TRY(manage_extra_channels(stream)); return Color(luminosity, luminosity, luminosity, alpha); } return Error::from_string_literal("Unsupported value for PhotometricInterpretation"); } ErrorOr read_color_cmyk(BigEndianInputBitStream& stream) { VERIFY(m_photometric_interpretation == PhotometricInterpretation::CMYK); auto const first_component = TRY(read_component(stream, m_bits_per_sample[0])); auto const second_component = TRY(read_component(stream, m_bits_per_sample[1])); auto const third_component = TRY(read_component(stream, m_bits_per_sample[2])); auto const fourth_component = TRY(read_component(stream, m_bits_per_sample[3])); // FIXME: We probably won't encounter CMYK images with an alpha channel, but if // we do: the first step to support them is not dropping the value here! [[maybe_unused]] auto const alpha = TRY(manage_extra_channels(stream)); return CMYK { first_component, second_component, third_component, fourth_component }; } template, u32, IntSize> SegmentDecoder> ErrorOr loop_over_pixels(SegmentDecoder&& segment_decoder) { auto const offsets = *segment_offsets(); auto const byte_counts = *segment_byte_counts(); auto const segment_length = m_metadata.tile_length().value_or(m_metadata.rows_per_strip().value_or(*m_metadata.image_length())); auto const segment_width = m_metadata.tile_width().value_or(m_image_width); auto const segment_per_rows = m_metadata.tile_width().map([&](u32 w) { return ceil_div(m_image_width, w); }).value_or(1); Variant oriented_bitmap = TRY(([&]() -> ErrorOr> { if (m_photometric_interpretation == PhotometricInterpretation::CMYK) return ExifOrientedCMYKBitmap::create(*metadata().orientation(), { m_image_width, *metadata().image_length() }); return ExifOrientedBitmap::create(*metadata().orientation(), { m_image_width, *metadata().image_length() }, BitmapFormat::BGRA8888); }())); for (u32 segment_index = 0; segment_index < offsets.size(); ++segment_index) { TRY(m_stream->seek(offsets[segment_index])); auto const rows_in_segment = segment_index < offsets.size() - 1 ? segment_length : *m_metadata.image_length() - segment_length * segment_index; auto const decoded_bytes = TRY(segment_decoder(byte_counts[segment_index], { segment_width, rows_in_segment })); auto decoded_segment = make(decoded_bytes); auto decoded_stream = make(move(decoded_segment)); for (u32 row = 0; row < segment_length; row++) { auto const image_row = row + segment_length * (segment_index / segment_per_rows); if (image_row >= *m_metadata.image_length()) break; Optional last_color {}; for (u32 column = 0; column < segment_width; ++column) { // If image_length % segment_length != 0, the last tile will be padded. // This variable helps us to skip these last columns. Note that we still // need to read the sample from the stream. auto const image_column = column + segment_width * (segment_index % segment_per_rows); if (m_photometric_interpretation == PhotometricInterpretation::CMYK) { auto const cmyk = TRY(read_color_cmyk(*decoded_stream)); if (image_column >= m_image_width) continue; oriented_bitmap.get().set_pixel(image_column, image_row, cmyk); } else { auto color = TRY(read_color(*decoded_stream)); // FIXME: We should do the differencing at the byte-stream level, that would make it // compatible with both LibPDF and all color formats. if (m_predictor == Predictor::HorizontalDifferencing && last_color.has_value()) { color.set_red(last_color->red() + color.red()); color.set_green(last_color->green() + color.green()); color.set_blue(last_color->blue() + color.blue()); if (m_alpha_channel_index.has_value()) color.set_alpha(last_color->alpha() + color.alpha()); } last_color = color; if (image_column >= m_image_width) continue; oriented_bitmap.get().set_pixel(image_column, image_row, color.value()); } } decoded_stream->align_to_byte_boundary(); } } if (m_photometric_interpretation == PhotometricInterpretation::CMYK) m_cmyk_bitmap = oriented_bitmap.get().bitmap(); else m_bitmap = oriented_bitmap.get().bitmap(); return {}; } ErrorOr ensure_tags_are_correct_for_ccitt() const { // Section 8: Baseline Field Reference Guide // BitsPerSample must be 1, since this type of compression is defined only for bilevel images. if (m_metadata.bits_per_sample()->size() > 1) return Error::from_string_literal("TIFFImageDecoderPlugin: CCITT image with BitsPerSample greater than one"); if (m_metadata.photometric_interpretation() != PhotometricInterpretation::WhiteIsZero && m_metadata.photometric_interpretation() != PhotometricInterpretation::BlackIsZero) return Error::from_string_literal("TIFFImageDecoderPlugin: CCITT compression is used on a non bilevel image"); return {}; } ErrorOr read_bytes_considering_fill_order(u32 bytes_to_read) const { auto const reverse_byte = [](u8 b) { b = (b & 0xF0) >> 4 | (b & 0x0F) << 4; b = (b & 0xCC) >> 2 | (b & 0x33) << 2; b = (b & 0xAA) >> 1 | (b & 0x55) << 1; return b; }; auto const bytes = TRY(m_stream->read_in_place(bytes_to_read)); auto copy = TRY(ByteBuffer::copy(bytes)); if (m_metadata.fill_order() == FillOrder::RightToLeft) { for (auto& byte : copy.bytes()) byte = reverse_byte(byte); } return copy; } ErrorOr decode_frame_impl() { switch (*m_metadata.compression()) { case Compression::NoCompression: { auto identity = [&](u32 num_bytes, IntSize) { return m_stream->read_in_place(num_bytes); }; TRY(loop_over_pixels(move(identity))); break; } case Compression::CCITTRLE: { TRY(ensure_tags_are_correct_for_ccitt()); ByteBuffer decoded_bytes {}; auto decode_ccitt_rle_segment = [&](u32 num_bytes, IntSize segment_size) -> ErrorOr { auto const encoded_bytes = TRY(read_bytes_considering_fill_order(num_bytes)); decoded_bytes = TRY(CCITT::decode_ccitt_rle(encoded_bytes, segment_size.width(), segment_size.height())); return decoded_bytes; }; TRY(loop_over_pixels(move(decode_ccitt_rle_segment))); break; } case Compression::Group3Fax: { TRY(ensure_tags_are_correct_for_ccitt()); auto const parameters = parse_t4_options(*m_metadata.t4_options()); ByteBuffer decoded_bytes {}; auto decode_group3_segment = [&](u32 num_bytes, IntSize segment_size) -> ErrorOr { auto const encoded_bytes = TRY(read_bytes_considering_fill_order(num_bytes)); decoded_bytes = TRY(CCITT::decode_ccitt_group3(encoded_bytes, segment_size.width(), segment_size.height(), parameters)); return decoded_bytes; }; TRY(loop_over_pixels(move(decode_group3_segment))); break; } case Compression::Group4Fax: { TRY(ensure_tags_are_correct_for_ccitt()); // FIXME: We need to parse T6 options ByteBuffer decoded_bytes {}; auto decode_group3_segment = [&](u32 num_bytes, IntSize segment_size) -> ErrorOr { auto const encoded_bytes = TRY(read_bytes_considering_fill_order(num_bytes)); decoded_bytes = TRY(CCITT::decode_ccitt_group4(encoded_bytes, segment_size.width(), segment_size.height())); return decoded_bytes; }; TRY(loop_over_pixels(move(decode_group3_segment))); break; } case Compression::LZW: { ByteBuffer decoded_bytes {}; auto decode_lzw_segment = [&](u32 num_bytes, IntSize) -> ErrorOr { auto const encoded_bytes = TRY(m_stream->read_in_place(num_bytes)); if (encoded_bytes.is_empty()) return Error::from_string_literal("TIFFImageDecoderPlugin: Unable to read from empty LZW segment"); // Note: AFAIK, there are two common ways to use LZW compression: // - With a LittleEndian stream and no Early-Change, this is used in the GIF format // - With a BigEndian stream and an EarlyChange of 1, this is used in the PDF format // The fun begins when they decided to change from the former to the latter when moving // from TIFF 5.0 to 6.0, and without including a way for files to be identified. // Fortunately, as the first byte of a LZW stream is a constant we can guess the endianess // and deduce the version from it. The first code is 0x100 (9-bits). if (encoded_bytes[0] == 0x00) decoded_bytes = TRY(Compress::LZWDecoder::decode_all(encoded_bytes, 8, 0)); else decoded_bytes = TRY(Compress::LZWDecoder::decode_all(encoded_bytes, 8, -1)); return decoded_bytes; }; TRY(loop_over_pixels(move(decode_lzw_segment))); break; } case Compression::AdobeDeflate: case Compression::PixarDeflate: { // This is an extension from the Technical Notes from 2002: // https://web.archive.org/web/20160305055905/http://partners.adobe.com/public/developer/en/tiff/TIFFphotoshop.pdf ByteBuffer decoded_bytes {}; auto decode_zlib = [&](u32 num_bytes, IntSize) -> ErrorOr { auto stream = make(MaybeOwned(*m_stream), num_bytes); auto decompressed_stream = TRY(Compress::ZlibDecompressor::create(move(stream))); decoded_bytes = TRY(decompressed_stream->read_until_eof(4096)); return decoded_bytes; }; TRY(loop_over_pixels(move(decode_zlib))); break; } case Compression::PackBits: { // Section 9: PackBits Compression ByteBuffer decoded_bytes {}; auto decode_packbits_segment = [&](u32 num_bytes, IntSize) -> ErrorOr { auto const encoded_bytes = TRY(m_stream->read_in_place(num_bytes)); decoded_bytes = TRY(Compress::PackBits::decode_all(encoded_bytes)); return decoded_bytes; }; TRY(loop_over_pixels(move(decode_packbits_segment))); break; } default: return Error::from_string_literal("This compression type is not supported yet :^)"); } return {}; } template ErrorOr read_value() { if (m_byte_order == ByteOrder::LittleEndian) return TRY(m_stream->read_value>()); if (m_byte_order == ByteOrder::BigEndian) return TRY(m_stream->read_value>()); VERIFY_NOT_REACHED(); } ErrorOr read_next_idf_offset() { auto const next_block_position = TRY(read_value()); if (next_block_position != 0) m_next_ifd = Optional { next_block_position }; else m_next_ifd = OptionalNone {}; return {}; } ErrorOr read_image_file_header() { // Section 2: TIFF Structure - Image File Header auto const byte_order = TRY(m_stream->read_value()); switch (byte_order) { case 0x4949: m_byte_order = ByteOrder::LittleEndian; break; case 0x4D4D: m_byte_order = ByteOrder::BigEndian; break; default: return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid byte order"); } auto const magic_number = TRY(read_value()); if (magic_number != 42) return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid magic number"); TRY(read_next_idf_offset()); return {}; } ErrorOr read_next_image_file_directory() { // Section 2: TIFF Structure - Image File Directory if (!m_next_ifd.has_value()) return Error::from_string_literal("TIFFImageDecoderPlugin: Missing an Image File Directory"); dbgln_if(TIFF_DEBUG, "Reading image file directory at offset {}", m_next_ifd); TRY(m_stream->seek(m_next_ifd.value())); auto const number_of_field = TRY(read_value()); auto next_tag_offset = TRY(m_stream->tell()); for (u16 i = 0; i < number_of_field; ++i) { if (auto maybe_error = read_tag(); maybe_error.is_error() && TIFF_DEBUG) dbgln("Unable to decode tag {}/{}", i + 1, number_of_field); // Section 2: TIFF Structure // IFD Entry // Size of tag(u16) + type(u16) + count(u32) + value_or_offset(u32) = 12 next_tag_offset += 12; TRY(m_stream->seek(next_tag_offset)); } TRY(read_next_idf_offset()); return {}; } ErrorOr> read_tiff_value(Type type, u32 count, u32 offset) { auto const old_offset = TRY(m_stream->tell()); ScopeGuard reset_offset { [this, old_offset]() { MUST(m_stream->seek(old_offset)); } }; TRY(m_stream->seek(offset)); if (size_of_type(type) * count > m_stream->remaining()) return Error::from_string_literal("TIFFImageDecoderPlugin: Tag size claims to be bigger that remaining bytes"); auto const read_every_values = [this, count]() -> ErrorOr> { Vector result {}; TRY(result.try_ensure_capacity(count)); if constexpr (IsSpecializationOf) { for (u32 i = 0; i < count; ++i) result.empend(T { TRY(read_value()), TRY(read_value()) }); } else { for (u32 i = 0; i < count; ++i) result.empend(typename TypePromoter::Type(TRY(read_value()))); } return result; }; switch (type) { case Type::Byte: case Type::Undefined: { Vector result; auto buffer = TRY(ByteBuffer::create_uninitialized(count)); TRY(m_stream->read_until_filled(buffer)); result.append(move(buffer)); return result; } case Type::ASCII: case Type::UTF8: { Vector result; // NOTE: No need to include the null terminator if (count > 0) --count; auto string_data = TRY(ByteBuffer::create_uninitialized(count)); TRY(m_stream->read_until_filled(string_data)); result.empend(TRY(String::from_utf8(StringView { string_data.bytes() }))); return result; } case Type::UnsignedShort: return read_every_values.template operator()(); case Type::IFD: case Type::UnsignedLong: return read_every_values.template operator()(); case Type::UnsignedRational: return read_every_values.template operator()>(); case Type::SignedLong: return read_every_values.template operator()(); case Type::SignedRational: return read_every_values.template operator()>(); case Type::Float: return read_every_values.template operator()(); case Type::Double: return read_every_values.template operator()(); default: VERIFY_NOT_REACHED(); } } ErrorOr read_tag() { auto const tag = TRY(read_value()); auto const raw_type = TRY(read_value()); auto const type = TRY(tiff_type_from_u16(raw_type)); auto const count = TRY(read_value()); Checked checked_size = size_of_type(type); checked_size *= count; if (checked_size.has_overflow()) return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid tag with too large data"); auto tiff_value = TRY(([=, this]() -> ErrorOr> { if (checked_size.value() <= 4) { auto value = TRY(read_tiff_value(type, count, TRY(m_stream->tell()))); TRY(m_stream->discard(4)); return value; } auto const offset = TRY(read_value()); return read_tiff_value(type, count, offset); }())); auto subifd_handler = [&](u32 ifd_offset) -> ErrorOr { m_next_ifd = ifd_offset; TRY(read_next_image_file_directory()); return {}; }; TRY(handle_tag(move(subifd_handler), m_metadata, tag, type, count, move(tiff_value))); return {}; } NonnullOwnPtr m_stream; State m_state {}; RefPtr m_bitmap {}; RefPtr m_cmyk_bitmap {}; ByteOrder m_byte_order {}; Optional m_next_ifd {}; ExifMetadata m_metadata {}; // These are caches for m_metadata values PhotometricInterpretation m_photometric_interpretation {}; Vector m_bits_per_sample {}; u32 m_image_width {}; Predictor m_predictor {}; Optional m_alpha_channel_index {}; }; } TIFFImageDecoderPlugin::TIFFImageDecoderPlugin(NonnullOwnPtr stream) { m_context = make(move(stream)); } bool TIFFImageDecoderPlugin::sniff(ReadonlyBytes bytes) { if (bytes.size() < 4) return false; bool const valid_little_endian = bytes[0] == 0x49 && bytes[1] == 0x49 && bytes[2] == 0x2A && bytes[3] == 0x00; bool const valid_big_endian = bytes[0] == 0x4D && bytes[1] == 0x4D && bytes[2] == 0x00 && bytes[3] == 0x2A; return valid_little_endian || valid_big_endian; } IntSize TIFFImageDecoderPlugin::size() { return m_context->size(); } ErrorOr> TIFFImageDecoderPlugin::create(ReadonlyBytes data) { auto stream = TRY(try_make(data)); auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) TIFFImageDecoderPlugin(move(stream)))); TRY(plugin->m_context->decode_image_header()); return plugin; } ErrorOr TIFFImageDecoderPlugin::frame(size_t index, Optional) { if (index > 0) return Error::from_string_literal("TIFFImageDecoderPlugin: Invalid frame index"); if (m_context->state() == TIFF::TIFFLoadingContext::State::Error) return Error::from_string_literal("TIFFImageDecoderPlugin: Decoding failed"); if (m_context->state() < TIFF::TIFFLoadingContext::State::FrameDecoded) TRY(m_context->decode_frame()); if (m_context->cmyk_bitmap()) return ImageFrameDescriptor { TRY(m_context->cmyk_bitmap()->to_low_quality_rgb()), 0 }; return ImageFrameDescriptor { m_context->bitmap(), 0 }; } Optional TIFFImageDecoderPlugin::metadata() { return m_context->metadata(); } ErrorOr> TIFFImageDecoderPlugin::icc_data() { return m_context->metadata().icc_profile().map([](auto const& buffer) -> ReadonlyBytes { return buffer.bytes(); }); } ErrorOr> TIFFImageDecoderPlugin::read_exif_metadata(ReadonlyBytes data) { auto stream = TRY(try_make(data)); auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) TIFFImageDecoderPlugin(move(stream)))); TRY(plugin->m_context->decode_image_header()); return try_make(plugin->m_context->metadata()); } }