/* * Copyright (c) 2023, Lucas Chollet * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include namespace Gfx { /// 4.2 - Functions static ALWAYS_INLINE i32 unpack_signed(u32 u) { if (u % 2 == 0) return static_cast(u / 2); return -static_cast((u + 1) / 2); } /// /// B.2 - Field types // This is defined as a macro in order to get lazy-evaluated parameter // Note that the lambda will capture your context by reference. #define U32(d0, d1, d2, d3) \ ({ \ u8 const selector = TRY(stream.read_bits(2)); \ auto value = [&, selector]() -> ErrorOr { \ if (selector == 0) \ return (d0); \ if (selector == 1) \ return (d1); \ if (selector == 2) \ return (d2); \ if (selector == 3) \ return (d3); \ VERIFY_NOT_REACHED(); \ }(); \ TRY(value); \ }) static ALWAYS_INLINE ErrorOr U64(LittleEndianInputBitStream& stream) { u8 const selector = TRY(stream.read_bits(2)); if (selector == 0) return 0; if (selector == 1) return 1 + TRY(stream.read_bits(4)); if (selector == 2) return 17 + TRY(stream.read_bits(8)); VERIFY(selector == 3); u64 value = TRY(stream.read_bits(12)); u8 shift = 12; while (TRY(stream.read_bits(1)) == 1) { if (shift == 60) { value += TRY(stream.read_bits(4)) << shift; break; } value += TRY(stream.read_bits(8)) << shift; shift += 8; } return value; } /// /// D.2 - Image dimensions struct SizeHeader { u32 height {}; u32 width {}; }; static u32 aspect_ratio(u32 height, u32 ratio) { if (ratio == 1) return height; if (ratio == 2) return height * 12 / 10; if (ratio == 3) return height * 4 / 3; if (ratio == 4) return height * 3 / 2; if (ratio == 5) return height * 16 / 9; if (ratio == 6) return height * 5 / 4; if (ratio == 7) return height * 2 / 1; VERIFY_NOT_REACHED(); } static ErrorOr read_size_header(LittleEndianInputBitStream& stream) { SizeHeader size {}; auto const div8 = TRY(stream.read_bit()); if (div8) { auto const h_div8 = 1 + TRY(stream.read_bits(5)); size.height = 8 * h_div8; } else { size.height = U32( 1 + TRY(stream.read_bits(9)), 1 + TRY(stream.read_bits(13)), 1 + TRY(stream.read_bits(18)), 1 + TRY(stream.read_bits(30))); } auto const ratio = TRY(stream.read_bits(3)); if (ratio == 0) { if (div8) { auto const w_div8 = 1 + TRY(stream.read_bits(5)); size.width = 8 * w_div8; } else { size.width = U32( 1 + TRY(stream.read_bits(9)), 1 + TRY(stream.read_bits(13)), 1 + TRY(stream.read_bits(18)), 1 + TRY(stream.read_bits(30))); } } else { size.width = aspect_ratio(size.height, ratio); } return size; } /// /// D.3.5 - BitDepth struct BitDepth { u32 bits_per_sample { 8 }; u8 exp_bits {}; }; static ErrorOr read_bit_depth(LittleEndianInputBitStream& stream) { BitDepth bit_depth; bool const float_sample = TRY(stream.read_bit()); if (float_sample) { bit_depth.bits_per_sample = U32(32, 16, 24, 1 + TRY(stream.read_bits(6))); bit_depth.exp_bits = 1 + TRY(stream.read_bits(4)); } else { bit_depth.bits_per_sample = U32(8, 10, 12, 1 + TRY(stream.read_bits(6))); } return bit_depth; } /// /// E.2 - ColourEncoding struct ColourEncoding { enum class ColourSpace { kRGB = 0, kGrey = 1, kXYB = 2, kUnknown = 3, }; enum class WhitePoint { kD65 = 1, kCustom = 2, kE = 10, kDCI = 11, }; enum class Primaries { kSRGB = 1, kCustom = 2, k2100 = 3, kP3 = 11, }; enum class RenderingIntent { kPerceptual = 0, kRelative = 1, kSaturation = 2, kAbsolute = 3, }; struct Customxy { u32 ux {}; u32 uy {}; }; bool want_icc = false; ColourSpace colour_space { ColourSpace::kRGB }; WhitePoint white_point { WhitePoint::kD65 }; Primaries primaries { Primaries::kSRGB }; Customxy white {}; Customxy red {}; Customxy green {}; Customxy blue {}; RenderingIntent rendering_intent { RenderingIntent::kRelative }; }; [[maybe_unused]] static ErrorOr read_custom_xy(LittleEndianInputBitStream& stream) { ColourEncoding::Customxy custom_xy; auto const read_custom = [&stream]() -> ErrorOr { return U32( TRY(stream.read_bits(19)), 524288 + TRY(stream.read_bits(19)), 1048576 + TRY(stream.read_bits(20)), 2097152 + TRY(stream.read_bits(21))); }; custom_xy.ux = TRY(read_custom()); custom_xy.uy = TRY(read_custom()); return custom_xy; } static ErrorOr read_colour_encoding(LittleEndianInputBitStream& stream) { ColourEncoding colour_encoding; bool const all_default = TRY(stream.read_bit()); if (!all_default) { TODO(); } return colour_encoding; } /// /// B.3 - Extensions struct Extensions { u64 extensions {}; }; static ErrorOr read_extensions(LittleEndianInputBitStream& stream) { Extensions extensions; extensions.extensions = TRY(U64(stream)); if (extensions.extensions != 0) TODO(); return extensions; } /// /// K.2 - Non-separable upsampling Array s_d_up2 { -0.01716200, -0.03452303, -0.04022174, -0.02921014, -0.00624645, 0.14111091, 0.28896755, 0.00278718, -0.01610267, 0.56661550, 0.03777607, -0.01986694, -0.03144731, -0.01185068, -0.00213539 }; /// /// D.3 - Image metadata struct PreviewHeader { }; struct AnimationHeader { }; struct ExtraChannelInfo { }; static ErrorOr read_extra_channel_info(LittleEndianInputBitStream&) { TODO(); } struct ToneMapping { }; static ErrorOr read_tone_mapping(LittleEndianInputBitStream&) { TODO(); } struct OpsinInverseMatrix { }; static ErrorOr read_opsin_inverse_matrix(LittleEndianInputBitStream&) { TODO(); } struct ImageMetadata { u8 orientation { 1 }; Optional intrinsic_size; Optional preview; Optional animation; BitDepth bit_depth; bool modular_16bit_buffers { true }; u16 num_extra_channels {}; Vector ec_info; bool xyb_encoded { true }; ColourEncoding colour_encoding; ToneMapping tone_mapping; Extensions extensions; bool default_m; OpsinInverseMatrix opsin_inverse_matrix; u8 cw_mask { 0 }; Array up2_weight = s_d_up2; // TODO: add up[4, 8]_weight }; static ErrorOr read_metadata_header(LittleEndianInputBitStream& stream) { ImageMetadata metadata; bool const all_default = TRY(stream.read_bit()); if (!all_default) { bool const extra_fields = TRY(stream.read_bit()); if (extra_fields) { metadata.orientation = 1 + TRY(stream.read_bits(3)); bool const have_intr_size = TRY(stream.read_bit()); if (have_intr_size) metadata.intrinsic_size = TRY(read_size_header(stream)); bool const have_preview = TRY(stream.read_bit()); if (have_preview) TODO(); bool const have_animation = TRY(stream.read_bit()); if (have_animation) TODO(); } metadata.bit_depth = TRY(read_bit_depth(stream)); metadata.modular_16bit_buffers = TRY(stream.read_bit()); metadata.num_extra_channels = U32(0, 1, 2 + TRY(stream.read_bits(4)), 1 + TRY(stream.read_bits(12))); for (u16 i {}; i < metadata.num_extra_channels; ++i) metadata.ec_info.append(TRY(read_extra_channel_info(stream))); metadata.xyb_encoded = TRY(stream.read_bit()); metadata.colour_encoding = TRY(read_colour_encoding(stream)); if (extra_fields) metadata.tone_mapping = TRY(read_tone_mapping(stream)); metadata.extensions = TRY(read_extensions(stream)); } metadata.default_m = TRY(stream.read_bit()); if (!metadata.default_m && metadata.xyb_encoded) metadata.opsin_inverse_matrix = TRY(read_opsin_inverse_matrix(stream)); if (!metadata.default_m) metadata.cw_mask = TRY(stream.read_bits(3)); if (metadata.cw_mask != 0) TODO(); return metadata; } /// /// Table F.7 — BlendingInfo bundle struct BlendingInfo { enum class BlendMode { kReplace = 0, kAdd = 1, kBlend = 2, kMulAdd = 3, kMul = 4, }; BlendMode mode {}; u8 alpha_channel {}; u8 clamp {}; u8 source {}; }; static ErrorOr read_blending_info(LittleEndianInputBitStream& stream, ImageMetadata const& metadata, bool have_crop) { BlendingInfo blending_info; blending_info.mode = static_cast(U32(0, 1, 2, 3 + TRY(stream.read_bits(2)))); bool const extra = metadata.num_extra_channels > 0; // FIXME: also consider "cropped" image of the dimension of the frame VERIFY(!have_crop); bool const full_frame = !have_crop; if (extra) { TODO(); } if (blending_info.mode != BlendingInfo::BlendMode::kReplace || !full_frame) { blending_info.source = TRY(stream.read_bits(2)); } return blending_info; } /// /// J.1 - General struct RestorationFilter { bool gab { true }; u8 epf_iters { 2 }; Extensions extensions; }; static ErrorOr read_restoration_filter(LittleEndianInputBitStream& stream) { RestorationFilter restoration_filter; auto const all_defaults = TRY(stream.read_bit()); if (!all_defaults) { restoration_filter.gab = TRY(stream.read_bit()); if (restoration_filter.gab) { TODO(); } restoration_filter.epf_iters = TRY(stream.read_bits(2)); if (restoration_filter.epf_iters != 0) { TODO(); } restoration_filter.extensions = TRY(read_extensions(stream)); } return restoration_filter; } /// /// Table F.6 — Passes bundle struct Passes { u8 num_passes { 1 }; }; static ErrorOr read_passes(LittleEndianInputBitStream& stream) { Passes passes; passes.num_passes = U32(1, 2, 3, 4 + TRY(stream.read_bits(3))); if (passes.num_passes != 1) { TODO(); } return passes; } /// /// F.2 - FrameHeader struct FrameHeader { enum class FrameType { kRegularFrame = 0, kLFFrame = 1, kReferenceOnly = 2, kSkipProgressive = 3, }; enum class Encoding { kVarDCT = 0, kModular = 1, }; enum class Flags { None = 0, kNoise = 1, kPatches = 1 << 1, kSplines = 1 << 4, kUseLfFrame = 1 << 5, kSkipAdaptiveLFSmoothing = 1 << 7, }; FrameType frame_type { FrameType::kRegularFrame }; Encoding encoding { Encoding::kVarDCT }; Flags flags { Flags::None }; bool do_YCbCr { false }; Array jpeg_upsampling {}; u8 upsampling {}; Vector ec_upsampling {}; u8 group_size_shift { 1 }; Passes passes {}; u8 lf_level {}; bool have_crop { false }; BlendingInfo blending_info {}; bool is_last { true }; bool save_before_ct {}; String name {}; RestorationFilter restoration_filter {}; Extensions extensions {}; }; static int operator&(FrameHeader::Flags first, FrameHeader::Flags second) { return static_cast(first) & static_cast(second); } static ErrorOr read_frame_header(LittleEndianInputBitStream& stream, ImageMetadata const& metadata) { FrameHeader frame_header; bool const all_default = TRY(stream.read_bit()); if (!all_default) { frame_header.frame_type = static_cast(TRY(stream.read_bits(2))); frame_header.encoding = static_cast(TRY(stream.read_bits(1))); frame_header.flags = static_cast(TRY(U64(stream))); if (!metadata.xyb_encoded) frame_header.do_YCbCr = TRY(stream.read_bit()); if (!(frame_header.flags & FrameHeader::Flags::kUseLfFrame)) { if (frame_header.do_YCbCr) { frame_header.jpeg_upsampling[0] = TRY(stream.read_bits(2)); frame_header.jpeg_upsampling[1] = TRY(stream.read_bits(2)); frame_header.jpeg_upsampling[2] = TRY(stream.read_bits(2)); } frame_header.upsampling = U32(1, 2, 4, 8); for (u16 i {}; i < metadata.num_extra_channels; ++i) TODO(); } if (frame_header.encoding == FrameHeader::Encoding::kModular) frame_header.group_size_shift = TRY(stream.read_bits(2)); if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) TODO(); if (frame_header.frame_type != FrameHeader::FrameType::kReferenceOnly) frame_header.passes = TRY(read_passes(stream)); if (frame_header.frame_type == FrameHeader::FrameType::kLFFrame) TODO(); if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame) frame_header.have_crop = TRY(stream.read_bit()); if (frame_header.have_crop) TODO(); bool const normal_frame = frame_header.frame_type == FrameHeader::FrameType::kRegularFrame || frame_header.frame_type == FrameHeader::FrameType::kSkipProgressive; if (normal_frame) { frame_header.blending_info = TRY(read_blending_info(stream, metadata, frame_header.have_crop)); for (u16 i {}; i < metadata.num_extra_channels; ++i) TODO(); if (metadata.animation.has_value()) TODO(); frame_header.is_last = TRY(stream.read_bit()); } // FIXME: Ensure that is_last has the correct default value VERIFY(normal_frame); if (frame_header.frame_type != FrameHeader::FrameType::kLFFrame) { if (!frame_header.is_last) TODO(); frame_header.save_before_ct = TRY(stream.read_bit()); } // FIXME: Ensure that save_before_ct has the correct default value VERIFY(frame_header.frame_type != FrameHeader::FrameType::kLFFrame); auto const name_length = U32(0, TRY(stream.read_bits(4)), 16 + TRY(stream.read_bits(5)), 48 + TRY(stream.read_bits(10))); auto string_buffer = TRY(FixedArray::create(name_length)); TRY(stream.read_until_filled(string_buffer.span())); frame_header.name = TRY(String::from_utf8(StringView { string_buffer.span() })); frame_header.restoration_filter = TRY(read_restoration_filter(stream)); frame_header.extensions = TRY(read_extensions(stream)); } return frame_header; } /// /// F.3 TOC struct TOC { FixedArray entries; FixedArray group_offsets; }; static u64 num_toc_entries(FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups) { if (num_groups == 1 && frame_header.passes.num_passes == 1) return 1; // Otherwise, there is one entry for each of the following sections, // in the order they are listed: LfGlobal, one per LfGroup in raster // order, one for HfGlobal followed by HfPass data for all the passes, // and num_groups * frame_header.passes.num_passes for the PassGroup sections. auto const hf_contribution = frame_header.encoding == FrameHeader::Encoding::kVarDCT ? (1 + frame_header.passes.num_passes) : 0; return 1 + num_lf_groups + hf_contribution + num_groups * frame_header.passes.num_passes; } static ErrorOr read_toc(LittleEndianInputBitStream& stream, FrameHeader const& frame_header, u64 num_groups, u64 num_lf_groups) { TOC toc; bool const permuted_toc = TRY(stream.read_bit()); if (permuted_toc) { // Read permutations TODO(); } // F.3.3 - Decoding TOC stream.align_to_byte_boundary(); auto const toc_entries = num_toc_entries(frame_header, num_groups, num_lf_groups); toc.entries = TRY(FixedArray::create(toc_entries)); toc.group_offsets = TRY(FixedArray::create(toc_entries)); for (u32 i {}; i < toc_entries; ++i) { auto const new_entry = U32( TRY(stream.read_bits(10)), 1024 + TRY(stream.read_bits(14)), 17408 + TRY(stream.read_bits(22)), 4211712 + TRY(stream.read_bits(30))); toc.entries[i] = new_entry; toc.group_offsets[i] = (i == 0 ? 0 : toc.group_offsets[i - 1]) + new_entry; } if (permuted_toc) TODO(); stream.align_to_byte_boundary(); return toc; } /// /// G.1.2 - LF channel dequantization weights struct LfChannelDequantization { float m_x_lf_unscaled { 4096 }; float m_y_lf_unscaled { 512 }; float m_b_lf_unscaled { 256 }; }; static ErrorOr read_lf_channel_dequantization(LittleEndianInputBitStream& stream) { LfChannelDequantization lf_channel_dequantization; auto const all_default = TRY(stream.read_bit()); if (!all_default) { TODO(); } return lf_channel_dequantization; } /// /// C - Entropy decoding class EntropyDecoder { using BrotliCanonicalCode = Compress::Brotli::CanonicalCode; public: static ErrorOr create(LittleEndianInputBitStream& stream, u8 initial_num_distrib) { EntropyDecoder entropy_decoder; // C.2 - Distribution decoding entropy_decoder.m_lz77_enabled = TRY(stream.read_bit()); if (entropy_decoder.m_lz77_enabled) { TODO(); } TRY(entropy_decoder.read_pre_clustered_distributions(stream, initial_num_distrib)); bool const use_prefix_code = TRY(stream.read_bit()); if (!use_prefix_code) entropy_decoder.m_log_alphabet_size = 5 + TRY(stream.read_bits(2)); for (auto& config : entropy_decoder.m_configs) config = TRY(entropy_decoder.read_config(stream)); Vector counts; TRY(counts.try_resize(entropy_decoder.m_configs.size())); TRY(entropy_decoder.m_distributions.try_resize(entropy_decoder.m_configs.size())); if (use_prefix_code) { for (auto& count : counts) { if (TRY(stream.read_bit())) { auto const n = TRY(stream.read_bits(4)); count = 1 + (1 << n) + TRY(stream.read_bits(n)); } else { count = 1; } } // After reading the counts, the decoder reads each D[i] (implicitly // described by a prefix code) as specified in C.2.4, with alphabet_size = count[i]. for (u32 i {}; i < entropy_decoder.m_distributions.size(); ++i) { // The alphabet size mentioned in the [Brotli] RFC is explicitly specified as parameter alphabet_size // when the histogram is being decoded, except in the special case of alphabet_size == 1, where no // histogram is read, and all decoded symbols are zero without reading any bits at all. if (counts[i] != 1) { entropy_decoder.m_distributions[i] = TRY(BrotliCanonicalCode::read_prefix_code(stream, counts[i])); } else { entropy_decoder.m_distributions[i] = BrotliCanonicalCode { { 1 }, { 0 } }; } } } else { TODO(); } return entropy_decoder; } ErrorOr decode_hybrid_uint(LittleEndianInputBitStream& stream, u16 context) { // C.3.3 - Hybrid integer decoding if (m_lz77_enabled) TODO(); // Read symbol from entropy coded stream using D[clusters[ctx]] auto const token = TRY(m_distributions[m_clusters[context]].read_symbol(stream)); auto r = TRY(read_uint(stream, m_configs[m_clusters[context]], token)); return r; } private: struct HybridUint { u32 split_exponent {}; u32 split {}; u32 msb_in_token {}; u32 lsb_in_token {}; }; static ErrorOr read_uint(LittleEndianInputBitStream& stream, HybridUint const& config, u32 token) { if (token < config.split) return token; auto const n = config.split_exponent - config.msb_in_token - config.lsb_in_token + ((token - config.split) >> (config.msb_in_token + config.lsb_in_token)); VERIFY(n < 32); u32 const low_bits = token & ((1 << config.lsb_in_token) - 1); token = token >> config.lsb_in_token; token &= (1 << config.msb_in_token) - 1; token |= (1 << config.msb_in_token); auto const result = ((token << n | TRY(stream.read_bits(n))) << config.lsb_in_token) | low_bits; VERIFY(result < (1ul << 32)); return result; } ErrorOr read_pre_clustered_distributions(LittleEndianInputBitStream& stream, u8 num_distrib) { // C.2.2 Distribution clustering if (num_distrib == 1) TODO(); TRY(m_clusters.try_resize(num_distrib)); bool const is_simple = TRY(stream.read_bit()); u16 num_clusters = 0; if (is_simple) { u8 const nbits = TRY(stream.read_bits(2)); for (u8 i {}; i < num_distrib; ++i) { m_clusters[i] = TRY(stream.read_bits(nbits)); if (m_clusters[i] >= num_clusters) num_clusters = m_clusters[i] + 1; } } else { TODO(); } TRY(m_configs.try_resize(num_clusters)); return {}; } ErrorOr read_config(LittleEndianInputBitStream& stream) const { // C.2.3 - Hybrid integer configuration HybridUint config {}; config.split_exponent = TRY(stream.read_bits(ceil(log2(m_log_alphabet_size + 1)))); if (config.split_exponent != m_log_alphabet_size) { auto nbits = ceil(log2(config.split_exponent + 1)); config.msb_in_token = TRY(stream.read_bits(nbits)); nbits = ceil(log2(config.split_exponent - config.msb_in_token + 1)); config.lsb_in_token = TRY(stream.read_bits(nbits)); } else { config.msb_in_token = 0; config.lsb_in_token = 0; } config.split = 1 << config.split_exponent; return config; } bool m_lz77_enabled {}; Vector m_clusters; Vector m_configs; u8 m_log_alphabet_size { 15 }; Vector m_distributions; // D in the spec }; /// /// H.4.2 - MA tree decoding class MATree { public: struct LeafNode { u8 ctx {}; u8 predictor {}; i32 offset {}; u32 multiplier {}; }; static ErrorOr decode(LittleEndianInputBitStream& stream, Optional& decoder) { // G.1.3 - GlobalModular MATree tree; // 1 / 2 Read the 6 pre-clustered distributions auto const num_distrib = 6; if (!decoder.has_value()) decoder = TRY(EntropyDecoder::create(stream, num_distrib)); // 2 / 2 Decode the tree u64 ctx_id = 0; u64 nodes_left = 1; tree.m_tree.clear(); while (nodes_left > 0) { nodes_left--; i32 const property = TRY(decoder->decode_hybrid_uint(stream, 1)) - 1; if (property >= 0) { DecisionNode decision_node; decision_node.property = property; decision_node.value = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 0))); decision_node.left_child = tree.m_tree.size() + nodes_left + 1; decision_node.right_child = tree.m_tree.size() + nodes_left + 2; tree.m_tree.empend(decision_node); nodes_left += 2; } else { LeafNode leaf_node; leaf_node.ctx = ctx_id++; leaf_node.predictor = TRY(decoder->decode_hybrid_uint(stream, 2)); leaf_node.offset = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, 3))); auto const mul_log = TRY(decoder->decode_hybrid_uint(stream, 4)); auto const mul_bits = TRY(decoder->decode_hybrid_uint(stream, 5)); leaf_node.multiplier = (mul_bits + 1) << mul_log; tree.m_tree.empend(leaf_node); } } // Finally, the decoder reads (tree.size() + 1) / 2 pre-clustered distributions D as specified in C.1. auto const num_pre_clustered_distributions = (tree.m_tree.size() + 1) / 2; decoder = TRY(decoder->create(stream, num_pre_clustered_distributions)); return tree; } LeafNode get_leaf(Vector const& properties) const { // To find the MA leaf node, the MA tree is traversed, starting at the root node tree[0] // and for each decision node d, testing if property[d.property] > d.value, proceeding to // the node tree[d.left_child] if the test evaluates to true and to the node tree[d.right_child] // otherwise, until a leaf node is reached. DecisionNode node { m_tree[0].get() }; while (true) { auto const next_node = [this, &properties, &node]() { // Note: The behavior when trying to access a non-existing property is taken from jxl-oxide if (node.property < properties.size() && properties[node.property] > node.value) return m_tree[node.left_child]; return m_tree[node.right_child]; }(); if (next_node.has()) return next_node.get(); node = next_node.get(); } } private: struct DecisionNode { u64 property {}; i64 value {}; u64 left_child {}; u64 right_child {}; }; Vector> m_tree; }; /// /// H.5 - Self-correcting predictor struct WPHeader { u8 wp_p1 { 16 }; u8 wp_p2 { 10 }; u8 wp_p3a { 7 }; u8 wp_p3b { 7 }; u8 wp_p3c { 7 }; u8 wp_p3d { 0 }; u8 wp_p3e { 0 }; u8 wp_w0 { 13 }; u8 wp_w1 { 12 }; u8 wp_w2 { 12 }; u8 wp_w3 { 12 }; }; static ErrorOr read_self_correcting_predictor(LittleEndianInputBitStream& stream) { WPHeader self_correcting_predictor {}; bool const default_wp = TRY(stream.read_bit()); if (!default_wp) { TODO(); } return self_correcting_predictor; } /// /// struct TransformInfo { enum class TransformId { kRCT = 0, kPalette = 1, kSqueeze = 2, }; TransformId tr {}; u32 begin_c {}; u32 rct_type {}; }; static ErrorOr read_transform_info(LittleEndianInputBitStream& stream) { TransformInfo transform_info; transform_info.tr = static_cast(TRY(stream.read_bits(2))); if (transform_info.tr != TransformInfo::TransformId::kSqueeze) { transform_info.begin_c = U32( TRY(stream.read_bits(3)), 8 + TRY(stream.read_bits(3)), 72 + TRY(stream.read_bits(10)), 1096 + TRY(stream.read_bits(13))); } if (transform_info.tr == TransformInfo::TransformId::kRCT) { transform_info.rct_type = U32( 6, TRY(stream.read_bits(2)), 2 + TRY(stream.read_bits(4)), 10 + TRY(stream.read_bits(6))); } if (transform_info.tr != TransformInfo::TransformId::kRCT) TODO(); return transform_info; } /// /// Local abstractions to store the decoded image class Channel { public: static ErrorOr create(u32 width, u32 height) { Channel channel; channel.m_width = width; channel.m_height = height; TRY(channel.m_pixels.try_resize(channel.m_width * channel.m_height)); return channel; } i32 get(u32 x, u32 y) const { return m_pixels[x * m_width + y]; } void set(u32 x, u32 y, i32 value) { m_pixels[x * m_width + y] = value; } u32 width() const { return m_width; } u32 height() const { return m_height; } u32 hshift() const { return m_hshift; } u32 vshift() const { return m_vshift; } private: u32 m_width {}; u32 m_height {}; u32 m_hshift {}; u32 m_vshift {}; Vector m_pixels {}; }; class Image { public: static ErrorOr create(IntSize size) { Image image {}; // FIXME: Don't assume three channels and a fixed size TRY(image.m_channels.try_append(TRY(Channel::create(size.width(), size.height())))); TRY(image.m_channels.try_append(TRY(Channel::create(size.width(), size.height())))); TRY(image.m_channels.try_append(TRY(Channel::create(size.width(), size.height())))); return image; } ErrorOr> to_bitmap(u8 bits_per_sample) const { // FIXME: which channel size should we use? auto const width = m_channels[0].width(); auto const height = m_channels[0].height(); auto bitmap = TRY(Bitmap::create(BitmapFormat::BGRx8888, { width, height })); // FIXME: This assumes a raw image with RGB channels, other cases are possible VERIFY(bits_per_sample >= 8); for (u32 y {}; y < height; ++y) { for (u32 x {}; x < width; ++x) { auto const to_u8 = [&, bits_per_sample](i32 sample) -> u8 { // FIXME: Don't truncate the result to 8 bits static constexpr auto maximum_supported_bit_depth = 8; if (bits_per_sample > maximum_supported_bit_depth) sample >>= (bits_per_sample - maximum_supported_bit_depth); return clamp(sample + .5, 0, (1 << maximum_supported_bit_depth) - 1); }; Color const color { to_u8(m_channels[0].get(x, y)), to_u8(m_channels[1].get(x, y)), to_u8(m_channels[2].get(x, y)), }; bitmap->set_pixel(x, y, color); } } return bitmap; } Vector& channels() { return m_channels; } private: Vector m_channels; }; /// /// H.2 - Image decoding struct ModularHeader { bool use_global_tree {}; WPHeader wp_params {}; Vector transform {}; }; static ErrorOr> get_properties(Vector const& channels, u16 i, u32 x, u32 y) { Vector properties; // Table H.4 - Property definitions TRY(properties.try_append(i)); // FIXME: Handle other cases than GlobalModular TRY(properties.try_append(0)); TRY(properties.try_append(y)); TRY(properties.try_append(x)); i32 const W = x > 0 ? channels[i].get(x - 1, y) : (y > 0 ? channels[i].get(x, y - 1) : 0); i32 const N = y > 0 ? channels[i].get(x, y - 1) : W; i32 const NW = x > 0 && y > 0 ? channels[i].get(x - 1, y - 1) : W; i32 const NE = x + 1 < channels[i].width() && y > 0 ? channels[i].get(x + 1, y - 1) : N; i32 const NN = y > 1 ? channels[i].get(x, y - 2) : N; i32 const WW = x > 1 ? channels[i].get(x - 2, y) : W; TRY(properties.try_append(abs(N))); TRY(properties.try_append(abs(W))); TRY(properties.try_append(N)); TRY(properties.try_append(W)); // x > 0 ? W - /* (the value of property 9 at position (x - 1, y)) */ : W i32 x_1 = x - 1; i32 const W_x_1 = x_1 > 0 ? channels[i].get(x_1 - 1, y) : (x_1 >= 0 && y > 0 ? channels[i].get(x_1, y - 1) : 0); i32 const N_x_1 = x_1 >= 0 && y > 0 ? channels[i].get(x_1, y - 1) : W_x_1; i32 const NW_x_1 = x_1 > 0 && y > 0 ? channels[i].get(x_1 - 1, y - 1) : W_x_1; TRY(properties.try_append(W_x_1 + N_x_1 - NW_x_1)); TRY(properties.try_append(W + N - NW)); TRY(properties.try_append(W - NW)); TRY(properties.try_append(NW - N)); TRY(properties.try_append(N - NE)); TRY(properties.try_append(N - NN)); TRY(properties.try_append(W - WW)); // FIXME: Correctly compute max_error TRY(properties.try_append(0)); for (i16 j = i - 1; j >= 0; j--) { if (channels[j].width() != channels[i].width()) continue; if (channels[j].height() != channels[i].height()) continue; if (channels[j].hshift() != channels[i].hshift()) continue; if (channels[j].vshift() != channels[i].vshift()) continue; auto rC = channels[j].get(x, y); auto rW = (x > 0 ? channels[j].get(x - 1, y) : 0); auto rN = (y > 0 ? channels[j].get(x, y - 1) : rW); auto rNW = (x > 0 && y > 0 ? channels[j].get(x - 1, y - 1) : rW); auto rG = clamp(rW + rN - rNW, min(rW, rN), max(rW, rN)); TRY(properties.try_append(abs(rC))); TRY(properties.try_append(rC)); TRY(properties.try_append(abs(rC - rG))); TRY(properties.try_append(rC - rG)); } return properties; } static i32 prediction(Channel const& channel, u32 x, u32 y, u32 predictor) { i32 const W = x > 0 ? channel.get(x - 1, y) : (y > 0 ? channel.get(x, y - 1) : 0); i32 const N = y > 0 ? channel.get(x, y - 1) : W; i32 const NW = x > 0 && y > 0 ? channel.get(x - 1, y - 1) : W; i32 const NE = x + 1 < channel.width() && y > 0 ? channel.get(x + 1, y - 1) : N; i32 const NN = y > 1 ? channel.get(x, y - 2) : N; i32 const NEE = x + 2 < channel.width() and y > 0 ? channel.get(x + 2, y - 1) : NE; i32 const WW = x > 1 ? channel.get(x - 2, y) : W; switch (predictor) { case 0: return 0; case 1: return W; case 2: return N; case 3: return (W + N) / 2; case 4: return abs(N - NW) < abs(W - NW) ? W : N; case 5: return clamp(W + N - NW, min(W, N), max(W, N)); case 6: TODO(); return (0 + 3) >> 3; case 7: return NE; case 8: return NW; case 9: return WW; case 10: return (W + NW) / 2; case 11: return (N + NW) / 2; case 12: return (N + NE) / 2; case 13: return (6 * N - 2 * NN + 7 * W + WW + NEE + 3 * NE + 8) / 16; } VERIFY_NOT_REACHED(); } static ErrorOr read_modular_header(LittleEndianInputBitStream& stream, Image& image, Optional& decoder, MATree const& global_tree, u16 num_channels) { ModularHeader modular_header; modular_header.use_global_tree = TRY(stream.read_bit()); modular_header.wp_params = TRY(read_self_correcting_predictor(stream)); auto const nb_transforms = U32(0, 1, 2 + TRY(stream.read_bits(4)), 18 + TRY(stream.read_bits(8))); TRY(modular_header.transform.try_resize(nb_transforms)); for (u32 i {}; i < nb_transforms; ++i) modular_header.transform[i] = TRY(read_transform_info(stream)); Optional local_tree; if (!modular_header.use_global_tree) TODO(); // The decoder then starts an entropy-coded stream (C.1) and decodes the data for each channel // (in ascending order of index) as specified in H.3, skipping any channels having width or height // zero. Finally, the inverse transformations are applied (from last to first) as described in H.6. auto const& tree = local_tree.has_value() ? *local_tree : global_tree; for (u16 i {}; i < num_channels; ++i) { for (u32 y {}; y < image.channels()[i].height(); y++) { for (u32 x {}; x < image.channels()[i].width(); x++) { auto const properties = TRY(get_properties(image.channels(), i, x, y)); auto const leaf_node = tree.get_leaf(properties); auto diff = unpack_signed(TRY(decoder->decode_hybrid_uint(stream, leaf_node.ctx))); diff = (diff * leaf_node.multiplier) + leaf_node.offset; auto const total = diff + prediction(image.channels()[i], x, y, leaf_node.predictor); image.channels()[i].set(x, y, total); } } } return modular_header; } /// /// G.1.2 - LF channel dequantization weights struct GlobalModular { MATree ma_tree; ModularHeader modular_header; }; static ErrorOr read_global_modular(LittleEndianInputBitStream& stream, Image& image, FrameHeader const& frame_header, ImageMetadata const& metadata, Optional& entropy_decoder) { GlobalModular global_modular; auto const decode_ma_tree = TRY(stream.read_bit()); if (decode_ma_tree) global_modular.ma_tree = TRY(MATree::decode(stream, entropy_decoder)); // The decoder then decodes a modular sub-bitstream (Annex H), where // the number of channels is computed as follows: auto num_channels = metadata.num_extra_channels; if (frame_header.encoding == FrameHeader::Encoding::kModular) { if (!frame_header.do_YCbCr && !metadata.xyb_encoded && metadata.colour_encoding.colour_space == ColourEncoding::ColourSpace::kGrey) { num_channels += 1; } else { num_channels += 3; } } // FIXME: Ensure this spec comment: // However, the decoder only decodes the first nb_meta_channels channels and any further channels // that have a width and height that are both at most group_dim. At that point, it stops decoding. // No inverse transforms are applied yet. global_modular.modular_header = TRY(read_modular_header(stream, image, entropy_decoder, global_modular.ma_tree, num_channels)); return global_modular; } /// /// G.1 - LfGlobal struct LfGlobal { LfChannelDequantization lf_dequant; GlobalModular gmodular; }; static ErrorOr read_lf_global(LittleEndianInputBitStream& stream, Image& image, FrameHeader const& frame_header, ImageMetadata const& metadata, Optional& entropy_decoder) { LfGlobal lf_global; if (frame_header.flags != FrameHeader::Flags::None) TODO(); lf_global.lf_dequant = TRY(read_lf_channel_dequantization(stream)); if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) TODO(); lf_global.gmodular = TRY(read_global_modular(stream, image, frame_header, metadata, entropy_decoder)); return lf_global; } /// /// H.6 - Transformations static void apply_rct(Image& image, TransformInfo const& transformation) { auto& channels = image.channels(); for (u32 y {}; y < channels[transformation.begin_c].height(); y++) { for (u32 x {}; x < channels[transformation.begin_c].width(); x++) { auto a = channels[transformation.begin_c + 0].get(x, y); auto b = channels[transformation.begin_c + 1].get(x, y); auto c = channels[transformation.begin_c + 2].get(x, y); i32 d {}; i32 e {}; i32 f {}; auto const permutation = transformation.rct_type / 7; auto const type = transformation.rct_type % 7; if (type == 6) { // YCgCo auto const tmp = a - (c >> 1); e = c + tmp; f = tmp - (b >> 1); d = f + b; } else { if (type & 1) c = c + a; if ((type >> 1) == 1) b = b + a; if ((type >> 1) == 2) b = b + ((a + c) >> 1); d = a; e = b; f = c; } Array v {}; v[permutation % 3] = d; v[(permutation + 1 + (permutation / 3)) % 3] = e; v[(permutation + 2 - (permutation / 3)) % 3] = f; channels[transformation.begin_c + 0].set(x, y, v[0]); channels[transformation.begin_c + 1].set(x, y, v[1]); channels[transformation.begin_c + 2].set(x, y, v[2]); } } } static void apply_transformation(Image& image, TransformInfo const& transformation) { switch (transformation.tr) { case TransformInfo::TransformId::kRCT: apply_rct(image, transformation); break; case TransformInfo::TransformId::kPalette: case TransformInfo::TransformId::kSqueeze: TODO(); default: VERIFY_NOT_REACHED(); } } /// /// G.3.2 - PassGroup static ErrorOr read_pass_group(LittleEndianInputBitStream& stream, Image& image, FrameHeader const& frame_header, u32 group_dim, Vector const& transform_infos) { if (frame_header.encoding == FrameHeader::Encoding::kVarDCT) { (void)stream; TODO(); } auto& channels = image.channels(); for (u16 i {}; i < channels.size(); ++i) { // Skip meta-channels // FIXME: Also test if the channel has already been decoded // See: nb_meta_channels in the spec bool const is_meta_channel = channels[i].width() <= group_dim || channels[i].height() <= group_dim || channels[i].hshift() >= 3 || channels[i].vshift() >= 3; if (!is_meta_channel) TODO(); } for (auto const& transformation : transform_infos.in_reverse()) apply_transformation(image, transformation); return {}; } /// /// Table F.1 — Frame bundle struct Frame { FrameHeader frame_header; TOC toc; LfGlobal lf_global; u64 width {}; u64 height {}; u64 num_groups {}; u64 num_lf_groups {}; }; static ErrorOr read_frame(LittleEndianInputBitStream& stream, Image& image, SizeHeader const& size_header, ImageMetadata const& metadata, Optional& entropy_decoder) { Frame frame; frame.frame_header = TRY(read_frame_header(stream, metadata)); if (!frame.frame_header.have_crop) { frame.width = size_header.width; frame.height = size_header.height; } else { TODO(); } if (frame.frame_header.upsampling > 1) { frame.width = ceil(frame.width / frame.frame_header.upsampling); frame.height = ceil(frame.height / frame.frame_header.upsampling); } if (frame.frame_header.lf_level > 0) TODO(); // F.2 - FrameHeader auto const group_dim = 128 << frame.frame_header.group_size_shift; frame.num_groups = ceil(frame.width / group_dim) * ceil(frame.height / group_dim); frame.num_lf_groups = ceil(frame.width / (group_dim * 8)) * ceil(frame.height / (group_dim * 8)); frame.toc = TRY(read_toc(stream, frame.frame_header, frame.num_groups, frame.num_lf_groups)); image = TRY(Image::create({ frame.width, frame.height })); frame.lf_global = TRY(read_lf_global(stream, image, frame.frame_header, metadata, entropy_decoder)); for (u32 i {}; i < frame.num_lf_groups; ++i) TODO(); if (frame.frame_header.encoding == FrameHeader::Encoding::kVarDCT) { TODO(); } auto const num_pass_group = frame.num_groups * frame.frame_header.passes.num_passes; auto const& transform_info = frame.lf_global.gmodular.modular_header.transform; for (u64 i {}; i < num_pass_group; ++i) TRY(read_pass_group(stream, image, frame.frame_header, group_dim, transform_info)); return frame; } /// /// 5.2 - Mirroring static u32 mirror_1d(i32 coord, u32 size) { if (coord < 0) return mirror_1d(-coord - 1, size); else if (static_cast(coord) >= size) return mirror_1d(2 * size - 1 - coord, size); else return coord; } /// /// K - Image features static ErrorOr apply_upsampling(Image& image, ImageMetadata const& metadata, Frame const& frame) { Optional ec_max; for (auto upsampling : frame.frame_header.ec_upsampling) { if (!ec_max.has_value() || upsampling > *ec_max) ec_max = upsampling; } if (frame.frame_header.upsampling > 1 || ec_max.value_or(0) > 1) { if (frame.frame_header.upsampling > 2 || ec_max.value_or(0) > 2) TODO(); auto const k = frame.frame_header.upsampling; // FIXME: Use ec_upsampling for extra-channels for (auto& channel : image.channels()) { auto upsampled = TRY(Channel::create(k * channel.width(), k * channel.height())); // Loop over the original image for (u32 y {}; y < channel.height(); y++) { for (u32 x {}; x < channel.width(); x++) { // Loop over the upsampling factor for (u8 kx {}; kx < k; ++kx) { for (u8 ky {}; ky < k; ++ky) { double sum {}; // Loop over the W window double W_min = NumericLimits::max(); double W_max = -NumericLimits::max(); for (u8 ix {}; ix < 5; ++ix) { for (u8 iy {}; iy < 5; ++iy) { auto const j = (ky < k / 2) ? (iy + 5 * ky) : ((4 - iy) + 5 * (k - 1 - ky)); auto const i = (kx < k / 2) ? (ix + 5 * kx) : ((4 - ix) + 5 * (k - 1 - kx)); auto const minimum = min(i, j); auto const maximum = max(i, j); auto const index = 5 * k * minimum / 2 - minimum * (minimum - 1) / 2 + maximum - minimum; auto const origin_sample_x = mirror_1d(x + ix - 2, channel.width()); auto const origin_sample_y = mirror_1d(y + iy - 2, channel.height()); auto const origin_sample = channel.get(origin_sample_x, origin_sample_y); W_min = min(W_min, origin_sample); W_max = max(W_max, origin_sample); sum += origin_sample * metadata.up2_weight[index]; } } // The resulting sample is clamped to the range [a, b] where a and b are // the minimum and maximum of the samples in W. sum = clamp(sum, W_min, W_max); upsampled.set(x * k + kx, y * k + ky, sum); } } } } channel = move(upsampled); } } return {}; } static ErrorOr apply_image_features(Image& image, ImageMetadata const& metadata, Frame const& frame) { TRY(apply_upsampling(image, metadata, frame)); if (frame.frame_header.flags != FrameHeader::Flags::None) TODO(); return {}; } /// class JPEGXLLoadingContext { public: JPEGXLLoadingContext(NonnullOwnPtr stream) : m_stream(move(stream)) { } ErrorOr decode_image_header() { constexpr auto JPEGXL_SIGNATURE = 0xFF0A; auto const signature = TRY(m_stream.read_value>()); if (signature != JPEGXL_SIGNATURE) return Error::from_string_literal("Unrecognized signature"); m_header = TRY(read_size_header(m_stream)); m_metadata = TRY(read_metadata_header(m_stream)); m_state = State::HeaderDecoded; return {}; } ErrorOr decode_frame() { Image image {}; auto const frame = TRY(read_frame(m_stream, image, m_header, m_metadata, m_entropy_decoder)); if (frame.frame_header.restoration_filter.gab || frame.frame_header.restoration_filter.epf_iters != 0) TODO(); TRY(apply_image_features(image, m_metadata, frame)); // FIXME: Do a proper color transformation with metadata.colour_encoding if (m_metadata.xyb_encoded || frame.frame_header.do_YCbCr) TODO(); m_bitmap = TRY(image.to_bitmap(m_metadata.bit_depth.bits_per_sample)); return {}; } ErrorOr decode() { auto result = [this]() -> ErrorOr { // A.1 - Codestream structure // The header is already decoded in JPEGXLImageDecoderPlugin::create() if (m_metadata.colour_encoding.want_icc) TODO(); if (m_metadata.preview.has_value()) TODO(); TRY(decode_frame()); return {}; }(); m_state = result.is_error() ? State::Error : State::FrameDecoded; return result; } enum class State { NotDecoded = 0, Error, HeaderDecoded, FrameDecoded, BitmapDecoded }; State state() const { return m_state; } IntSize size() const { return { m_header.width, m_header.height }; } RefPtr bitmap() const { return m_bitmap; } private: State m_state { State::NotDecoded }; LittleEndianInputBitStream m_stream; RefPtr m_bitmap; Optional m_entropy_decoder {}; SizeHeader m_header; ImageMetadata m_metadata; FrameHeader m_frame_header; TOC m_toc; }; JPEGXLImageDecoderPlugin::JPEGXLImageDecoderPlugin(NonnullOwnPtr stream) { m_context = make(move(stream)); } JPEGXLImageDecoderPlugin::~JPEGXLImageDecoderPlugin() = default; IntSize JPEGXLImageDecoderPlugin::size() { return m_context->size(); } bool JPEGXLImageDecoderPlugin::sniff(ReadonlyBytes data) { return data.size() > 2 && data.data()[0] == 0xFF && data.data()[1] == 0x0A; } ErrorOr> JPEGXLImageDecoderPlugin::create(ReadonlyBytes data) { auto stream = TRY(try_make(data)); auto plugin = TRY(adopt_nonnull_own_or_enomem(new (nothrow) JPEGXLImageDecoderPlugin(move(stream)))); TRY(plugin->m_context->decode_image_header()); return plugin; } bool JPEGXLImageDecoderPlugin::is_animated() { return false; } size_t JPEGXLImageDecoderPlugin::loop_count() { return 0; } size_t JPEGXLImageDecoderPlugin::frame_count() { return 1; } size_t JPEGXLImageDecoderPlugin::first_animated_frame_index() { return 0; } ErrorOr JPEGXLImageDecoderPlugin::frame(size_t index, Optional) { if (index > 0) return Error::from_string_literal("JPEGXLImageDecoderPlugin: Invalid frame index"); if (m_context->state() == JPEGXLLoadingContext::State::Error) return Error::from_string_literal("JPEGXLImageDecoderPlugin: Decoding failed"); if (m_context->state() < JPEGXLLoadingContext::State::BitmapDecoded) TRY(m_context->decode()); return ImageFrameDescriptor { m_context->bitmap(), 0 }; } ErrorOr> JPEGXLImageDecoderPlugin::icc_data() { return OptionalNone {}; } }