/* * Copyright (c) 2021, the SerenityOS developers. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "TreeMapWidget.h" #include #include #include #include #include namespace SpaceAnalyzer { REGISTER_WIDGET(SpaceAnalyzer, TreeMapWidget) TreeMapWidget::TreeMapWidget() : m_viewpoint(0) { } TreeMapWidget::~TreeMapWidget() { } static const Color colors[] = { Color(253, 231, 37), Color(148, 216, 64), Color(60, 188, 117), Color(31, 150, 139), Color(45, 112, 142), Color(63, 71, 136), Color(85, 121, 104), }; static float get_normalized_aspect_ratio(float a, float b) { if (a < b) { return a / b; } else { return b / a; } } static bool node_is_leaf(const TreeMapNode& node) { return node.num_children() == 0; } bool TreeMapWidget::rect_can_contain_label(const Gfx::IntRect& rect) const { return rect.height() > font().presentation_size() && rect.width() > 20; } bool TreeMapWidget::rect_can_contain_children(const Gfx::IntRect& rect) const { return rect.height() > 10 && rect.width() > 10; } Gfx::IntRect TreeMapWidget::inner_rect_for_frame(const Gfx::IntRect& rect) const { const int margin = 5; Gfx::IntRect tmp_rect = rect; tmp_rect.shrink(2, 2); // border tmp_rect.shrink(2, 2); // shading if (rect_can_contain_label(tmp_rect)) { tmp_rect.set_y(tmp_rect.y() + font().presentation_size() + margin); tmp_rect.set_height(tmp_rect.height() - (font().presentation_size() + margin * 2)); tmp_rect.set_x(tmp_rect.x() + margin); tmp_rect.set_width(tmp_rect.width() - margin * 2); } return tmp_rect; } void TreeMapWidget::paint_cell_frame(GUI::Painter& painter, const TreeMapNode& node, const Gfx::IntRect& cell_rect, int depth, bool fill_frame) const { const Gfx::IntRect border_rect = cell_rect.shrunken(2, 2); const Gfx::IntRect outer_rect = border_rect.shrunken(2, 2); const Gfx::IntRect inner_rect = inner_rect_for_frame(cell_rect); painter.clear_clip_rect(); painter.add_clip_rect(cell_rect); Color color = colors[depth % (sizeof(colors) / sizeof(colors[0]))]; if (m_selected_node_cache == &node) { color = color.darkened(0.8f); } // Draw borders. painter.draw_rect(cell_rect, Color::Black, false); painter.draw_line(border_rect.bottom_left(), border_rect.top_left(), color.lightened()); painter.draw_line(border_rect.top_left(), border_rect.top_right(), color.lightened()); painter.draw_line(border_rect.top_right(), border_rect.bottom_right(), color.darkened()); painter.draw_line(border_rect.bottom_left(), border_rect.bottom_right(), color.darkened()); // Paint the background. if (fill_frame) { painter.fill_rect(outer_rect, color); } else { for (auto& shard : outer_rect.shatter(inner_rect)) { painter.fill_rect(shard, color); } } // Paint text. if (rect_can_contain_label(outer_rect)) { Gfx::IntRect text_rect = outer_rect; text_rect.move_by(2, 2); painter.draw_text(text_rect, node.name(), font(), Gfx::TextAlignment::TopLeft, Color::Black); if (node_is_leaf(node)) { text_rect.move_by(0, font().presentation_size() + 1); painter.draw_text(text_rect, human_readable_size(node.area()), font(), Gfx::TextAlignment::TopLeft, Color::Black); } } } template void TreeMapWidget::lay_out_children(const TreeMapNode& node, const Gfx::IntRect& rect, int depth, Function callback) { if (node.num_children() == 0) { return; } // Check if the children are sorted yet, if not do that now. for (size_t k = 0; k < node.num_children() - 1; k++) { if (node.child_at(k).area() < node.child_at(k + 1).area()) { node.sort_children_by_area(); break; } } int total_area = node.area(); Gfx::IntRect canvas = rect; bool remaining_nodes_are_too_small = false; for (size_t i = 0; !remaining_nodes_are_too_small && i < node.num_children(); i++) { const int i_node_area = node.child_at(i).area(); if (i_node_area == 0) break; const int long_side_size = max(canvas.width(), canvas.height()); const int short_side_size = min(canvas.width(), canvas.height()); int row_or_column_size = (long long int)long_side_size * i_node_area / total_area; int node_area_sum = i_node_area; size_t k = i + 1; // Try to add nodes to this row or column so long as the worst aspect ratio of // the new set of nodes is better than the worst aspect ratio of the current set. { float best_worst_aspect_ratio_so_far = get_normalized_aspect_ratio(row_or_column_size, short_side_size); for (; k < node.num_children(); k++) { // Do a preliminary calculation of the worst aspect ratio of the nodes at index i and k // if that aspect ratio is better than the 'best_worst_aspect_ratio_so_far' we keep it, // otherwise it is discarded. int k_node_area = node.child_at(k).area(); if (k_node_area == 0) { break; } int new_node_area_sum = node_area_sum + k_node_area; int new_row_or_column_size = (long long int)long_side_size * new_node_area_sum / total_area; int i_node_size = (long long int)short_side_size * i_node_area / new_node_area_sum; int k_node_size = (long long int)short_side_size * k_node_area / new_node_area_sum; float i_node_aspect_ratio = get_normalized_aspect_ratio(new_row_or_column_size, i_node_size); float k_node_aspect_ratio = get_normalized_aspect_ratio(new_row_or_column_size, k_node_size); float new_worst_aspect_ratio = min(i_node_aspect_ratio, k_node_aspect_ratio); if (new_worst_aspect_ratio < best_worst_aspect_ratio_so_far) { break; } best_worst_aspect_ratio_so_far = new_worst_aspect_ratio; node_area_sum = new_node_area_sum; row_or_column_size = new_row_or_column_size; } } // Paint the elements from 'i' up to and including 'k-1'. { const int fixed_side_size = row_or_column_size; int placement_area = node_area_sum; int main_dim = short_side_size; // Lay out nodes in a row or column. Orientation orientation = canvas.width() > canvas.height() ? Orientation::Horizontal : Orientation::Vertical; Gfx::IntRect layout_rect = canvas; layout_rect.set_primary_size_for_orientation(orientation, fixed_side_size); for (size_t q = i; q < k; q++) { auto& child = node.child_at(q); int node_size = (long long int)main_dim * child.area() / placement_area; Gfx::IntRect cell_rect = layout_rect; cell_rect.set_secondary_size_for_orientation(orientation, node_size); Gfx::IntRect inner_rect = inner_rect_for_frame(cell_rect); bool is_visual_leaf = child.num_children() == 0 || !rect_can_contain_children(inner_rect); callback(child, q, cell_rect, depth, is_visual_leaf ? IsVisualLeaf::Yes : IsVisualLeaf::No, IsRemainder::No); if (cell_rect.width() * cell_rect.height() < 16) { remaining_nodes_are_too_small = true; } else { lay_out_children(child, inner_rect, depth + 1, callback); } layout_rect.set_secondary_offset_for_orientation(orientation, layout_rect.secondary_offset_for_orientation(orientation) + node_size); main_dim -= node_size; placement_area -= child.area(); } canvas.set_primary_offset_for_orientation(orientation, canvas.primary_offset_for_orientation(orientation) + fixed_side_size); canvas.set_primary_size_for_orientation(orientation, canvas.primary_size_for_orientation(orientation) - fixed_side_size); } // Consume nodes that were added to this row or column. i = k - 1; total_area -= node_area_sum; } // If not the entire canvas was filled with nodes, fill the remaining area with a dither pattern. if (!canvas.is_empty()) { callback(node, 0, canvas, depth, IsVisualLeaf::No, IsRemainder::Yes); } } const TreeMapNode* TreeMapWidget::path_node(size_t n) const { if (!m_tree.ptr()) return nullptr; const TreeMapNode* iter = &m_tree->root(); size_t path_index = 0; while (iter && path_index < m_path.size() && path_index < n) { size_t child_index = m_path[path_index]; if (child_index >= iter->num_children()) { return nullptr; } iter = &iter->child_at(child_index); path_index++; } return iter; } void TreeMapWidget::paint_event(GUI::PaintEvent& event) { GUI::Frame::paint_event(event); GUI::Painter painter(*this); m_selected_node_cache = path_node(m_path.size()); const TreeMapNode* node = path_node(m_viewpoint); if (!node) { painter.fill_rect(frame_inner_rect(), Color::MidGray); } else if (node_is_leaf(*node)) { paint_cell_frame(painter, *node, frame_inner_rect(), m_viewpoint - 1, true); } else { lay_out_children(*node, frame_inner_rect(), m_viewpoint, [&](const TreeMapNode& node, int, const Gfx::IntRect& rect, int depth, IsVisualLeaf visual_leaf, IsRemainder remainder) { if (remainder == IsRemainder::No) { bool fill = visual_leaf == IsVisualLeaf::Yes ? true : false; paint_cell_frame(painter, node, rect, depth, fill); } else { Color color = colors[depth % (sizeof(colors) / sizeof(colors[0]))]; painter.clear_clip_rect(); painter.add_clip_rect(rect); painter.draw_rect(rect, Color::Black); painter.fill_rect_with_dither_pattern(rect.shrunken(2, 2), color, Color::Black); } }); } } Vector TreeMapWidget::path_to_position(const Gfx::IntPoint& position) { const TreeMapNode* node = path_node(m_viewpoint); if (!node) { return {}; } Vector path; lay_out_children(*node, frame_inner_rect(), m_viewpoint, [&](const TreeMapNode&, int index, const Gfx::IntRect& rect, int, IsVisualLeaf, IsRemainder is_remainder) { if (is_remainder == IsRemainder::No && rect.contains(position)) { path.append(index); } }); return path; } void TreeMapWidget::mousedown_event(GUI::MouseEvent& event) { const TreeMapNode* node = path_node(m_viewpoint); if (node && !node_is_leaf(*node)) { Vector path = path_to_position(event.position()); if (!path.is_empty()) { m_path.shrink(m_viewpoint); m_path.append(path); if (on_path_change) { on_path_change(); } update(); } } } void TreeMapWidget::doubleclick_event(GUI::MouseEvent& event) { if (event.button() != GUI::MouseButton::Left) return; const TreeMapNode* node = path_node(m_viewpoint); if (node && !node_is_leaf(*node)) { Vector path = path_to_position(event.position()); m_path.shrink(m_viewpoint); m_path.append(path); m_viewpoint = m_path.size(); if (on_path_change) { on_path_change(); } update(); } } void TreeMapWidget::mousewheel_event(GUI::MouseEvent& event) { int delta = event.wheel_delta(); // FIXME: The wheel_delta is premultiplied in the window server, we actually want a raw value here. int step_size = GUI::WindowServerConnection::the().send_sync()->step_size(); if (delta > 0) { size_t step_back = delta / step_size; if (step_back > m_viewpoint) step_back = m_viewpoint; set_viewpoint(m_viewpoint - step_back); } else { size_t step_up = (-delta) / step_size; set_viewpoint(m_viewpoint + step_up); } } void TreeMapWidget::context_menu_event(GUI::ContextMenuEvent& context_menu_event) { if (on_context_menu_request) on_context_menu_request(context_menu_event); } void TreeMapWidget::set_tree(RefPtr tree) { m_tree = tree; m_path.clear(); m_viewpoint = 0; if (on_path_change) { on_path_change(); } update(); } void TreeMapWidget::set_viewpoint(size_t viewpoint) { if (viewpoint > m_path.size()) viewpoint = m_path.size(); m_viewpoint = viewpoint; if (on_path_change) { on_path_change(); } update(); } size_t TreeMapWidget::path_size() const { return m_path.size() + 1; } size_t TreeMapWidget::viewpoint() const { return m_viewpoint; } }