/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include namespace Kernel { int Process::sys$usleep(useconds_t usec) { REQUIRE_PROMISE(stdio); if (!usec) return 0; u64 wakeup_time = Thread::current()->sleep(usec * TimeManagement::the().ticks_per_second() / 1000000); if (wakeup_time > g_uptime) return -EINTR; return 0; } int Process::sys$sleep(unsigned seconds) { REQUIRE_PROMISE(stdio); if (!seconds) return 0; u64 wakeup_time = Thread::current()->sleep(seconds * TimeManagement::the().ticks_per_second()); if (wakeup_time > g_uptime) { u32 ticks_left_until_original_wakeup_time = wakeup_time - g_uptime; return ticks_left_until_original_wakeup_time / TimeManagement::the().ticks_per_second(); } return 0; } }