mirror of
https://github.com/RGBCube/serenity
synced 2025-05-14 17:54:57 +00:00
208 lines
7.6 KiB
C++
208 lines
7.6 KiB
C++
/*
|
|
* Copyright (c) 2021, Pankaj R <pankydev8@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <Kernel/Arch/Delay.h>
|
|
#include <Kernel/Devices/Storage/NVMe/NVMeController.h>
|
|
#include <Kernel/Devices/Storage/NVMe/NVMeInterruptQueue.h>
|
|
#include <Kernel/Devices/Storage/NVMe/NVMePollQueue.h>
|
|
#include <Kernel/Devices/Storage/NVMe/NVMeQueue.h>
|
|
#include <Kernel/Library/StdLib.h>
|
|
|
|
namespace Kernel {
|
|
ErrorOr<NonnullLockRefPtr<NVMeQueue>> NVMeQueue::try_create(NVMeController& device, u16 qid, Optional<u8> irq, u32 q_depth, OwnPtr<Memory::Region> cq_dma_region, OwnPtr<Memory::Region> sq_dma_region, Doorbell db_regs, QueueType queue_type)
|
|
{
|
|
// Note: Allocate DMA region for RW operation. For now the requests don't exceed more than 4096 bytes (Storage device takes care of it)
|
|
RefPtr<Memory::PhysicalPage> rw_dma_page;
|
|
auto rw_dma_region = TRY(MM.allocate_dma_buffer_page("NVMe Queue Read/Write DMA"sv, Memory::Region::Access::ReadWrite, rw_dma_page));
|
|
|
|
if (rw_dma_page.is_null())
|
|
return ENOMEM;
|
|
|
|
if (queue_type == QueueType::Polled) {
|
|
auto queue = NVMePollQueue::try_create(move(rw_dma_region), rw_dma_page.release_nonnull(), qid, q_depth, move(cq_dma_region), move(sq_dma_region), move(db_regs));
|
|
return queue;
|
|
}
|
|
|
|
auto queue = NVMeInterruptQueue::try_create(device, move(rw_dma_region), rw_dma_page.release_nonnull(), qid, irq.release_value(), q_depth, move(cq_dma_region), move(sq_dma_region), move(db_regs));
|
|
return queue;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT NVMeQueue::NVMeQueue(NonnullOwnPtr<Memory::Region> rw_dma_region, Memory::PhysicalPage const& rw_dma_page, u16 qid, u32 q_depth, OwnPtr<Memory::Region> cq_dma_region, OwnPtr<Memory::Region> sq_dma_region, Doorbell db_regs)
|
|
: m_rw_dma_region(move(rw_dma_region))
|
|
, m_qid(qid)
|
|
, m_admin_queue(qid == 0)
|
|
, m_qdepth(q_depth)
|
|
, m_cq_dma_region(move(cq_dma_region))
|
|
, m_sq_dma_region(move(sq_dma_region))
|
|
, m_db_regs(move(db_regs))
|
|
, m_rw_dma_page(rw_dma_page)
|
|
|
|
{
|
|
m_requests.with([q_depth](auto& requests) {
|
|
requests.try_ensure_capacity(q_depth).release_value_but_fixme_should_propagate_errors();
|
|
});
|
|
m_sqe_array = { reinterpret_cast<NVMeSubmission*>(m_sq_dma_region->vaddr().as_ptr()), m_qdepth };
|
|
m_cqe_array = { reinterpret_cast<NVMeCompletion*>(m_cq_dma_region->vaddr().as_ptr()), m_qdepth };
|
|
}
|
|
|
|
bool NVMeQueue::cqe_available()
|
|
{
|
|
return PHASE_TAG(m_cqe_array[m_cq_head].status) == m_cq_valid_phase;
|
|
}
|
|
|
|
void NVMeQueue::update_cqe_head()
|
|
{
|
|
// To prevent overflow, use a temp variable
|
|
u32 temp_cq_head = m_cq_head + 1;
|
|
if (temp_cq_head == m_qdepth) {
|
|
m_cq_head = 0;
|
|
m_cq_valid_phase ^= 1;
|
|
} else {
|
|
m_cq_head = temp_cq_head;
|
|
}
|
|
}
|
|
|
|
u32 NVMeQueue::process_cq()
|
|
{
|
|
u32 nr_of_processed_cqes = 0;
|
|
m_requests.with([this, &nr_of_processed_cqes](auto& requests) {
|
|
while (cqe_available()) {
|
|
u16 status;
|
|
u16 cmdid;
|
|
++nr_of_processed_cqes;
|
|
status = CQ_STATUS_FIELD(m_cqe_array[m_cq_head].status);
|
|
cmdid = m_cqe_array[m_cq_head].command_id;
|
|
dbgln_if(NVME_DEBUG, "NVMe: Completion with status {:x} and command identifier {}. CQ_HEAD: {}", status, cmdid, m_cq_head);
|
|
|
|
if (!requests.contains(cmdid)) {
|
|
dmesgln("Bogus cmd id: {}", cmdid);
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
complete_current_request(cmdid, status);
|
|
update_cqe_head();
|
|
}
|
|
});
|
|
if (nr_of_processed_cqes) {
|
|
update_cq_doorbell();
|
|
}
|
|
return nr_of_processed_cqes;
|
|
}
|
|
|
|
void NVMeQueue::submit_sqe(NVMeSubmission& sub)
|
|
{
|
|
SpinlockLocker lock(m_sq_lock);
|
|
|
|
memcpy(&m_sqe_array[m_sq_tail], &sub, sizeof(NVMeSubmission));
|
|
{
|
|
u32 temp_sq_tail = m_sq_tail + 1;
|
|
if (temp_sq_tail == m_qdepth)
|
|
m_sq_tail = 0;
|
|
else
|
|
m_sq_tail = temp_sq_tail;
|
|
}
|
|
|
|
dbgln_if(NVME_DEBUG, "NVMe: Submission with command identifier {}. SQ_TAIL: {}", sub.cmdid, m_sq_tail);
|
|
update_sq_doorbell();
|
|
}
|
|
|
|
void NVMeQueue::complete_current_request(u16 cmdid, u16 status)
|
|
{
|
|
m_requests.with([this, cmdid, status](auto& requests) {
|
|
auto& request_pdu = requests.get(cmdid).release_value();
|
|
auto current_request = request_pdu.request;
|
|
AsyncDeviceRequest::RequestResult req_result = AsyncDeviceRequest::Success;
|
|
|
|
ScopeGuard guard = [&req_result, status, &request_pdu] {
|
|
if (request_pdu.request)
|
|
request_pdu.request->complete(req_result);
|
|
if (request_pdu.end_io_handler)
|
|
request_pdu.end_io_handler(status);
|
|
request_pdu.clear();
|
|
};
|
|
|
|
// There can be submission without any request associated with it such as with
|
|
// admin queue commands during init. If there is no request, we are done
|
|
if (!current_request)
|
|
return;
|
|
|
|
if (status) {
|
|
req_result = AsyncBlockDeviceRequest::Failure;
|
|
return;
|
|
}
|
|
|
|
if (current_request->request_type() == AsyncBlockDeviceRequest::RequestType::Read) {
|
|
if (auto result = current_request->write_to_buffer(current_request->buffer(), m_rw_dma_region->vaddr().as_ptr(), current_request->buffer_size()); result.is_error()) {
|
|
req_result = AsyncBlockDeviceRequest::MemoryFault;
|
|
return;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
u16 NVMeQueue::submit_sync_sqe(NVMeSubmission& sub)
|
|
{
|
|
// For now let's use sq tail as a unique command id.
|
|
u16 cmd_status;
|
|
u16 cid = get_request_cid();
|
|
sub.cmdid = cid;
|
|
|
|
m_requests.with([this, &sub, &cmd_status](auto& requests) {
|
|
requests.set(sub.cmdid, { nullptr, [this, &cmd_status](u16 status) mutable { cmd_status = status; m_sync_wait_queue.wake_all(); } });
|
|
});
|
|
submit_sqe(sub);
|
|
|
|
// FIXME: Only sync submissions (usually used for admin commands) use a WaitQueue based IO. Eventually we need to
|
|
// move this logic into the block layer instead of sprinkling them in the driver code.
|
|
m_sync_wait_queue.wait_forever("NVMe sync submit"sv);
|
|
return cmd_status;
|
|
}
|
|
|
|
void NVMeQueue::read(AsyncBlockDeviceRequest& request, u16 nsid, u64 index, u32 count)
|
|
{
|
|
NVMeSubmission sub {};
|
|
sub.op = OP_NVME_READ;
|
|
sub.rw.nsid = nsid;
|
|
sub.rw.slba = AK::convert_between_host_and_little_endian(index);
|
|
// No. of lbas is 0 based
|
|
sub.rw.length = AK::convert_between_host_and_little_endian((count - 1) & 0xFFFF);
|
|
sub.rw.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(m_rw_dma_page->paddr().as_ptr()));
|
|
sub.cmdid = get_request_cid();
|
|
|
|
m_requests.with([&sub, &request](auto& requests) {
|
|
requests.set(sub.cmdid, { request, nullptr });
|
|
});
|
|
|
|
full_memory_barrier();
|
|
submit_sqe(sub);
|
|
}
|
|
|
|
void NVMeQueue::write(AsyncBlockDeviceRequest& request, u16 nsid, u64 index, u32 count)
|
|
{
|
|
NVMeSubmission sub {};
|
|
|
|
sub.op = OP_NVME_WRITE;
|
|
sub.rw.nsid = nsid;
|
|
sub.rw.slba = AK::convert_between_host_and_little_endian(index);
|
|
// No. of lbas is 0 based
|
|
sub.rw.length = AK::convert_between_host_and_little_endian((count - 1) & 0xFFFF);
|
|
sub.rw.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(m_rw_dma_page->paddr().as_ptr()));
|
|
sub.cmdid = get_request_cid();
|
|
|
|
m_requests.with([&sub, &request](auto& requests) {
|
|
requests.set(sub.cmdid, { request, nullptr });
|
|
});
|
|
|
|
if (auto result = request.read_from_buffer(request.buffer(), m_rw_dma_region->vaddr().as_ptr(), request.buffer_size()); result.is_error()) {
|
|
complete_current_request(sub.cmdid, AsyncDeviceRequest::MemoryFault);
|
|
return;
|
|
}
|
|
|
|
full_memory_barrier();
|
|
submit_sqe(sub);
|
|
}
|
|
|
|
UNMAP_AFTER_INIT NVMeQueue::~NVMeQueue() = default;
|
|
}
|