1
Fork 0
mirror of https://github.com/RGBCube/serenity synced 2025-05-21 15:55:07 +00:00
serenity/Kernel/Storage/NVMe/NVMeQueue.cpp
Pankaj Raghav 0096eadf40 Kernel/NVMe: Redesign the tracking of requests in an NVMe Queue
There was a private variable named m_current_request which was used to
track a single request at a time. This guarantee is given by the block
layer where we wait on each IO. This design will break down in the
driver once the block layer removes that constraint.

Redesign the IO handling in a completely asynchronous way by maintaining
requests up to queue depth. NVMeIO struct is introduced to track an IO
submitted along with other information such whether the IO is still
being processed and an endio callback which will be called during the
end of a request.

A hashmap private variable is created which will key based on the
command id of a request with a value of NVMeIO. endio handler will come
in handy if we are doing a sync request and we want to wake up the wait
queue during the end.

This change also simplified the code by removing some special condition
in submit_sqe function, etc that were marked as FIXME for a long time.
2023-04-05 12:45:27 +02:00

188 lines
6.8 KiB
C++

/*
* Copyright (c) 2021, Pankaj R <pankydev8@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/Delay.h>
#include <Kernel/StdLib.h>
#include <Kernel/Storage/NVMe/NVMeController.h>
#include <Kernel/Storage/NVMe/NVMeInterruptQueue.h>
#include <Kernel/Storage/NVMe/NVMePollQueue.h>
#include <Kernel/Storage/NVMe/NVMeQueue.h>
namespace Kernel {
ErrorOr<NonnullLockRefPtr<NVMeQueue>> NVMeQueue::try_create(u16 qid, Optional<u8> irq, u32 q_depth, OwnPtr<Memory::Region> cq_dma_region, Vector<NonnullRefPtr<Memory::PhysicalPage>> cq_dma_page, OwnPtr<Memory::Region> sq_dma_region, Vector<NonnullRefPtr<Memory::PhysicalPage>> sq_dma_page, Memory::TypedMapping<DoorbellRegister volatile> db_regs)
{
// Note: Allocate DMA region for RW operation. For now the requests don't exceed more than 4096 bytes (Storage device takes care of it)
RefPtr<Memory::PhysicalPage> rw_dma_page;
auto rw_dma_region = TRY(MM.allocate_dma_buffer_page("NVMe Queue Read/Write DMA"sv, Memory::Region::Access::ReadWrite, rw_dma_page));
if (!irq.has_value()) {
auto queue = TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) NVMePollQueue(move(rw_dma_region), *rw_dma_page, qid, q_depth, move(cq_dma_region), cq_dma_page, move(sq_dma_region), sq_dma_page, move(db_regs))));
return queue;
}
auto queue = TRY(adopt_nonnull_lock_ref_or_enomem(new (nothrow) NVMeInterruptQueue(move(rw_dma_region), *rw_dma_page, qid, irq.value(), q_depth, move(cq_dma_region), cq_dma_page, move(sq_dma_region), sq_dma_page, move(db_regs))));
return queue;
}
UNMAP_AFTER_INIT NVMeQueue::NVMeQueue(NonnullOwnPtr<Memory::Region> rw_dma_region, Memory::PhysicalPage const& rw_dma_page, u16 qid, u32 q_depth, OwnPtr<Memory::Region> cq_dma_region, Vector<NonnullRefPtr<Memory::PhysicalPage>> cq_dma_page, OwnPtr<Memory::Region> sq_dma_region, Vector<NonnullRefPtr<Memory::PhysicalPage>> sq_dma_page, Memory::TypedMapping<DoorbellRegister volatile> db_regs)
: m_rw_dma_region(move(rw_dma_region))
, m_qid(qid)
, m_admin_queue(qid == 0)
, m_qdepth(q_depth)
, m_cq_dma_region(move(cq_dma_region))
, m_cq_dma_page(cq_dma_page)
, m_sq_dma_region(move(sq_dma_region))
, m_sq_dma_page(sq_dma_page)
, m_db_regs(move(db_regs))
, m_rw_dma_page(rw_dma_page)
{
m_requests.try_ensure_capacity(q_depth).release_value_but_fixme_should_propagate_errors();
m_sqe_array = { reinterpret_cast<NVMeSubmission*>(m_sq_dma_region->vaddr().as_ptr()), m_qdepth };
m_cqe_array = { reinterpret_cast<NVMeCompletion*>(m_cq_dma_region->vaddr().as_ptr()), m_qdepth };
}
bool NVMeQueue::cqe_available()
{
return PHASE_TAG(m_cqe_array[m_cq_head].status) == m_cq_valid_phase;
}
void NVMeQueue::update_cqe_head()
{
// To prevent overflow, use a temp variable
u32 temp_cq_head = m_cq_head + 1;
if (temp_cq_head == m_qdepth) {
m_cq_head = 0;
m_cq_valid_phase ^= 1;
} else {
m_cq_head = temp_cq_head;
}
}
u32 NVMeQueue::process_cq()
{
u32 nr_of_processed_cqes = 0;
while (cqe_available()) {
u16 status;
u16 cmdid;
++nr_of_processed_cqes;
status = CQ_STATUS_FIELD(m_cqe_array[m_cq_head].status);
cmdid = m_cqe_array[m_cq_head].command_id;
dbgln_if(NVME_DEBUG, "NVMe: Completion with status {:x} and command identifier {}. CQ_HEAD: {}", status, cmdid, m_cq_head);
if (!m_requests.contains(cmdid)) {
dmesgln("Bogus cmd id: {}", cmdid);
VERIFY_NOT_REACHED();
}
complete_current_request(cmdid, status);
update_cqe_head();
}
if (nr_of_processed_cqes) {
update_cq_doorbell();
}
return nr_of_processed_cqes;
}
void NVMeQueue::submit_sqe(NVMeSubmission& sub)
{
SpinlockLocker lock(m_sq_lock);
memcpy(&m_sqe_array[m_sq_tail], &sub, sizeof(NVMeSubmission));
{
u32 temp_sq_tail = m_sq_tail + 1;
if (temp_sq_tail == m_qdepth)
m_sq_tail = 0;
else
m_sq_tail = temp_sq_tail;
}
dbgln_if(NVME_DEBUG, "NVMe: Submission with command identifier {}. SQ_TAIL: {}", sub.cmdid, m_sq_tail);
full_memory_barrier();
update_sq_doorbell();
}
u16 NVMeQueue::submit_sync_sqe(NVMeSubmission& sub)
{
// For now let's use sq tail as a unique command id.
u16 cqe_cid;
u16 cid = get_request_cid();
sub.cmdid = cid;
{
SpinlockLocker req_lock(m_request_lock);
if (m_requests.contains(sub.cmdid) && m_requests.get(sub.cmdid).release_value().used)
VERIFY_NOT_REACHED();
m_requests.set(sub.cmdid, { nullptr, true, nullptr });
}
submit_sqe(sub);
do {
int index;
{
SpinlockLocker lock(m_cq_lock);
index = m_cq_head - 1;
if (index < 0)
index = m_qdepth - 1;
}
cqe_cid = m_cqe_array[index].command_id;
microseconds_delay(1);
} while (cid != cqe_cid);
auto status = CQ_STATUS_FIELD(m_cqe_array[m_cq_head].status);
return status;
}
void NVMeQueue::read(AsyncBlockDeviceRequest& request, u16 nsid, u64 index, u32 count)
{
NVMeSubmission sub {};
sub.op = OP_NVME_READ;
sub.rw.nsid = nsid;
sub.rw.slba = AK::convert_between_host_and_little_endian(index);
// No. of lbas is 0 based
sub.rw.length = AK::convert_between_host_and_little_endian((count - 1) & 0xFFFF);
sub.rw.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(m_rw_dma_page->paddr().as_ptr()));
sub.cmdid = get_request_cid();
{
SpinlockLocker req_lock(m_request_lock);
if (m_requests.contains(sub.cmdid) && m_requests.get(sub.cmdid).release_value().used)
VERIFY_NOT_REACHED();
m_requests.set(sub.cmdid, { request, true, nullptr });
}
full_memory_barrier();
submit_sqe(sub);
}
void NVMeQueue::write(AsyncBlockDeviceRequest& request, u16 nsid, u64 index, u32 count)
{
NVMeSubmission sub {};
sub.op = OP_NVME_WRITE;
sub.rw.nsid = nsid;
sub.rw.slba = AK::convert_between_host_and_little_endian(index);
// No. of lbas is 0 based
sub.rw.length = AK::convert_between_host_and_little_endian((count - 1) & 0xFFFF);
sub.rw.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(m_rw_dma_page->paddr().as_ptr()));
sub.cmdid = get_request_cid();
{
SpinlockLocker req_lock(m_request_lock);
if (m_requests.contains(sub.cmdid) && m_requests.get(sub.cmdid).release_value().used)
VERIFY_NOT_REACHED();
m_requests.set(sub.cmdid, { request, true, nullptr });
}
if (auto result = request.read_from_buffer(request.buffer(), m_rw_dma_region->vaddr().as_ptr(), request.buffer_size()); result.is_error()) {
complete_current_request(sub.cmdid, AsyncDeviceRequest::MemoryFault);
return;
}
full_memory_barrier();
submit_sqe(sub);
}
UNMAP_AFTER_INIT NVMeQueue::~NVMeQueue() = default;
}